Physiological, Proteomic Analysis, and Calcium-Related Gene Expression Reveal var. Adaptability to Acid Rain Stress Under Various Calcium Levels.

Front Plant Sci

Key Laboratory for Subtropical Wetland Ecosystem Research of Ministry of Education (MOE), College of the Environment and Ecology, Xiamen University, Xiamen, China.

Published: March 2022

As one of the serious environmental problems worldwide, acid rain (AR) has always caused continuous damage to the forestry ecosystem. Studies have shown that AR can leach calcium ions from plants and soil. Calcium (Ca) is also a crucial regulator of the plant stress response, whereas there are few reports on how Ca regulates the response of AR-resistant woody plants to AR stress. In this study, by setting different exogenous Ca levels, we study the physiological and molecular mechanism of Ca in regulating the var. response to AR stress. Our results showed that low Ca level leads to photosynthesis, and antioxidant defense system decreases in . var. leaves; however, these negative effects could be reversed at high Ca level. In addition, proteomic analyses identified 44 differentially expressed proteins in different Ca level treatments of . var. under AR stress. These proteins were classified into seven groups, which include metabolic process, photosynthesis and energy pathway, cell rescue and defense, transcription and translation, protein modification and degradation, signal transduction, etc. Furthermore, the study found that low Ca level leads to an obvious increase of Ca-related gene expression under AR stress in . var. using qRT-PCR analyses and however can be reversed at high Ca level. These findings would enrich and extend the Ca signaling pathways of AR stress in AR-resistant woody plants and are expected to have important theoretical and practical significance in revealing the mechanism of woody plants tolerating AR stress and protecting forestry ecosystem in soil environment under different Ca levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8978443PMC
http://dx.doi.org/10.3389/fpls.2022.845107DOI Listing

Publication Analysis

Top Keywords

woody plants
12
gene expression
8
acid rain
8
stress
8
forestry ecosystem
8
ar-resistant woody
8
low level
8
level leads
8
reversed high
8
high level
8

Similar Publications

Marginal response of non-structural carbohydrates and increased biomass in a dominant shrub (Dasiphora fruticosa) to water table decline in a minerotrophic peatland.

Plant Biol (Stuttg)

January 2025

Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China.

Assessing how dominant peatland species, such as Dasiphora fruticosa, adapt to water table decline is crucial to advance understanding of their growth and survival strategies. Currently, most studies have primarily focused on their growth and biomass, with limited knowledge on the response of non-structural carbohydrates (NSCs) and physiological adaptations of these woody plants under long-term drainage. This study assessed the response of photosynthesis and transpiration rates, biomass, and NSC concentrations (including soluble sugars and starch) in the leaves, stems, and roots of D.

View Article and Find Full Text PDF

Xylem plasticity is important for trees to coordinate hydraulic efficiency and safety under changing soil water availability. However, the physiological and transcriptional regulations of cambium on xylem plasticity are not well understood. In this study, mulberry saplings of drought-resistant Wubu and drought-susceptible Zhongshen1 were subjected to moderate or severe drought stresses for 21 days and subsequently rewatered for 12 days.

View Article and Find Full Text PDF

Unlabelled: The rapid growth of Bamboo made the uptake and allocation of nitrogen much important. Nitrate is the main form that plant utilized nitrogen by nitrate transporters (NRTs) as well as ammonium salt. In this study, we identified 155 genes which mapped to 32 chromosomes out of 35 chromosomes in .

View Article and Find Full Text PDF

Dodder (Cuscuta spp.), particularly the species Cuscuta chinensis, is a parasitic weed known for its ability to infest a broad spectrum of plant species, thereby significantly affecting the stability and functionality of native ecosystems (Zhang, Xu et al. 2021).

View Article and Find Full Text PDF

The land use/land cover in the Sudano-Sahelian area of Cameroon has been disturbed since these 3 decades resulting from the influence of anthropogenic factors. This study aimed to assess floristic diversity and the impacts of anthropogenic activities on the Pette forest massifs in the Pette Subdivision. The transect method (1000 × 20 m) was used for plant inventory, and Landsat images 5 TM (1990), 7 ETM+ (2005) and 8 OLI_TIRS (2020) were analysed to determine land cover.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!