This study was aimed to determine pesticides concentrations in fresh vegetables and assess human health risks in North-Western Himalayan region of India. Vegetable samples (n = 300) collected randomly from different agro-climatic zones were analyzed for 19 pesticides using gas chromatography. Pesticide residues were detected in 116 samples, of which 49 samples exceeded maximum permissible limits established by European Commission. Hexaconazole was most frequently detected in 9.3% samples followed by aldrin (8.3%), alachlor (5.3%), bifenthrin (4.3%), chlorpyrifos (3.7%), metribuzin (2.7%), β-endosulfan, ethion, β-HCH (2%, each), γ-HCH (1.3%), α-HCH, δ-HCH, malathion, heptachlor (1%, each), and α-endosulfan, pendimethalin in 0.7% samples. Human health risk assessment revealed that the percent contribution to acceptable daily intakes of pesticides via dietary intake of vegetables ranged from 0.014 to 39.4% in children and 0.003 to 9.85% in adults. Although hazard index values were < 1 but considering the concentrations of detected pesticide in samples, children were found to be at more risk. Since pragmatic investigations on occurrence of pesticides in vegetables and human health risk assessment from study area have not yet been worked out, so, this study highlights the importance of adopting good agricultural practices, awareness on food safety, monitoring of harmful chemicals in food commodities, and execution of food safety regulations to safeguard environmental and human health.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-022-09992-9DOI Listing

Publication Analysis

Top Keywords

human health
12
health risks
8
himalayan region
8
region india
8
samples
5
multi-residue determination
4
pesticides
4
determination pesticides
4
pesticides vegetables
4
vegetables assessment
4

Similar Publications

Background: Developing drugs for treating Alzheimer's disease (AD) has been extremely challenging and costly due to limited knowledge on underlying biological mechanisms and therapeutic targets. Repurposing drugs or their combination has shown potential in accelerating drug development due to the reduced drug toxicity while targeting multiple pathologies.

Method: To address the challenge in AD drug development, we developed a multi-task machine learning pipeline to integrate a comprehensive knowledge graph on biological/pharmacological interactions and multi-level evidence on drug efficacy, to identify repurposable drugs and their combination candidates RESULT: Using the drug embedding from the heterogeneous graph representation model, we ranked drug candidates based on evidence from post-treatment transcriptomic patterns, mechanistic efficacy in preclinical models, population-based treatment effect, and Phase 2/3 clinical trials.

View Article and Find Full Text PDF

Background: Traumatic Brain Injury (TBI) is one of the most common nonheritable causes of Alzheimer's disease (AD). However, there is lack of effective treatment for both AD and TBI. We posit that network-based integration of multi-omics and endophenotype disease module coupled with large real-world patient data analysis of electronic health records (EHR) can help identify repurposable drug candidates for the treatment of TBI and AD.

View Article and Find Full Text PDF

Background: Although investment in biomedical and pharmaceutical research has increased significantly over the past two decades, there are no oral disease-modifying treatments for Alzheimer's disease (AD).

Method: We performed comprehensive human genetic and multi-omics data analyses to test likely causal relationship between EPHX2 (encoding soluble epoxide hydrolase [sEH]) and risk of AD. Next, we tested the effect of the oral administration of EC5026 (a first-in-class, picomolar sEH inhibitor) in a transgenic mouse model of AD-5xFAD and mechanistic pathways of EC5026 in patient induced Pluripotent Stem Cells (iPSC) derived neurons.

View Article and Find Full Text PDF

Background: Epidemiological studies report an elevated risk of neurodegenerative disorders, particularly Parkinson's disease (PD), in patients with type 2 diabetes mellitus (T2DM) that is mitigated in those prescribed incretin mimetics or dipeptidyl peptidase 4 inhibitors (DPP-4Is). Incretin mimetic repurposing appears promising in human PD and Alzheimer's disease (AD) clinical trials. DPP-4Is are yet to be evaluated in PD or AD human studies.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

GSK, Stevenage, Hertfordshire, United Kingdom.

Background: Progranulin (PGRN), a glycoprotein secreted by microglia and neurons, regulates lysosomal function, neuroinflammation, and has neurotrophic effects. Variants in the granulin gene (GRN) that cause a reduction of PGRN in plasma and cerebrospinal fluid (CSF) are associated with an increased risk of Alzheimer's disease (AD). The sortilin receptor (SORT1) on neurons and microglia regulates PGRN degradation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!