Mutations in the chromodomain helicase DNA-binding 8 (CHD8) gene are a frequent cause of autism spectrum disorder (ASD). While its phenotypic spectrum often encompasses macrocephaly, implicating cortical abnormalities, how CHD8 haploinsufficiency affects neurodevelopmental is unclear. Here, employing human cerebral organoids, we find that CHD8 haploinsufficiency disrupted neurodevelopmental trajectories with an accelerated and delayed generation of, respectively, inhibitory and excitatory neurons that yields, at days 60 and 120, symmetrically opposite expansions in their proportions. This imbalance is consistent with an enlargement of cerebral organoids as an in vitro correlate of patients' macrocephaly. Through an isogenic design of patient-specific mutations and mosaic organoids, we define genotype-phenotype relationships and uncover their cell-autonomous nature. Our results define cell-type-specific CHD8-dependent molecular defects related to an abnormal program of proliferation and alternative splicing. By identifying cell-type-specific effects of CHD8 mutations, our study uncovers reproducible developmental alterations that may be employed for neurodevelopmental disease modeling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2022.110615DOI Listing

Publication Analysis

Top Keywords

chd8 haploinsufficiency
12
cerebral organoids
8
chd8
5
haploinsufficiency links
4
links autism
4
autism transient
4
transient alterations
4
alterations excitatory
4
excitatory inhibitory
4
inhibitory trajectories
4

Similar Publications

Article Synopsis
  • Loss-of-function mutations in the CHD8 gene are linked to Autism Spectrum Disorders (ASD), leading to significant molecular and cellular changes relevant for developing new therapies.
  • Synthetic SINEUP-CHD8, a type of long non-coding RNA, can increase the production of the CHD8 protein in cells lacking it, and reverse associated negative effects in cells from patients with CHD8 mutations.
  • In zebrafish models, SINEUP-CHD8 not only alleviated symptoms caused by CHD8 suppression, like macrocephaly and excessive neuron production, but also suggests potential for RNA-based treatments for various neurodevelopmental disorders.
View Article and Find Full Text PDF

Chromodomain helicase DNA-binding 8 (CHD8) is a gene that poses a high risk for autism spectrum disorder (ASD) and neurological development delay. Nevertheless, the impact of CHD8 haploinsufficiency on both hippocampus neurogenesis and behavior remains uncertain. Here, we performed behavioral assessments on male and female CHD8 heterozygous mice.

View Article and Find Full Text PDF

Disruptive variants in the chromodomain helicase , which acts as a transcriptional regulator during neurodevelopment, are strongly associated with risk for autism spectrum disorder (ASD). Loss of CHD8 function is hypothesized to perturb gene regulatory networks in the developing brain, thereby contributing to ASD etiology. However, insight into the cell type-specific transcriptional effects of CHD8 loss of function remains limited.

View Article and Find Full Text PDF

Chd8 haploinsufficiency impacts rearing experience in C57BL/6 mice.

Genes Brain Behav

April 2024

Children's Hospital Los Angeles, The Saban Research Institute, Los Angeles, California, USA.

Mutations in CHD8 are one of the highest genetic risk factors for autism spectrum disorder. Studies in mice that investigate underlying mechanisms have shown Chd8 haploinsufficient mice display some trait disruptions that mimic clinical phenotypes, although inconsistencies have been reported in some traits across different models on the same strain background. One source of variation across studies may be the impact of Chd8 haploinsufficiency on maternal-offspring interactions.

View Article and Find Full Text PDF
Article Synopsis
  • Autism Spectrum Disorder (ASD) is a condition that is often passed down from parents and can show up in many different ways.
  • Scientists discovered that about 20% of the reasons someone might have ASD are tied to changes in specific genes, which can mess up their normal function.
  • By using a cool tool called CRISPR, researchers managed to boost the activity of these genes in brain cells, which helped fix some of the problems caused by the genetic changes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!