Broadly neutralizing antibodies (bNAbs) are promising agents to prevent HIV infection and achieve HIV remission without antiretroviral therapy (ART). As with ART, bNAb combinations are likely needed to cover HIV's extensive diversity. Not all bNAbs are identical in terms of their breadth, potency, and in vivo longevity (half-life). Given these differences, it is important to optimally select the composition, or dose ratio, of combination bNAb therapies for future clinical studies. We developed a model that synthesizes 1) pharmacokinetics, 2) potency against a wide HIV diversity, 3) interaction models for how drugs work together, and 4) correlates that translate in vitro potency to clinical protection. We found optimization requires drug-specific balances between potency, longevity, and interaction type. As an example, tradeoffs between longevity and potency are shown by comparing a combination therapy to a bi-specific antibody (a single protein merging both bNAbs) that takes the better potency but the worse longevity of the two components. Then, we illustrate a realistic dose ratio optimization of a triple combination of VRC07, 3BNC117, and 10-1074 bNAbs. We apply protection estimates derived from both a non-human primate (NHP) challenge study meta-analysis and the human antibody mediated prevention (AMP) trials. In both cases, we find a 2:1:1 dose emphasizing VRC07 is nearly optimal. Our approach can be immediately applied to optimize the next generation of combination antibody prevention and cure studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9084525PMC
http://dx.doi.org/10.1371/journal.pcbi.1010003DOI Listing

Publication Analysis

Top Keywords

broadly neutralizing
8
neutralizing antibodies
8
dose ratio
8
potency
6
combination
5
optimizing clinical
4
clinical dosing
4
dosing combination
4
combination broadly
4
hiv
4

Similar Publications

Towards developing multistrain PEDV vaccines: Integrating basic concepts and SARS-CoV-2 pan-sarbecovirus strategies.

Virology

January 2025

Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Vaccinology and Immunotherapeutics, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada. Electronic address:

Porcine epidemic diarrhea virus (PEDV) is a major pathogen impacting the global pig industry, with outbreaks causing significant financial losses. The genetic variability of PEDV has posed challenges for vaccine development since its identification in the 1970s, a problem that intensified with its global emergence in the 2010s. Since current vaccines provide limited cross-protection against PEDV strains, and the development of multistrain PEDV vaccines remains an underexplored area of research, there is an urgent need for improved vaccine solutions.

View Article and Find Full Text PDF

Inactivation of Zika Virus with Hydroxypropyl-Beta-Cyclodextrin.

Vaccines (Basel)

January 2025

Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA.

: Zika virus (ZIKV) infection is associated with life-threatening diseases in humans. To date, there are no available FDA-approved therapies or vaccines for the specific treatment or prevention of ZIKV infection. Variation in the ZIKV envelope protein (Env), along with its complex quaternary structure, presents challenges to synthetic approaches for developing an effective vaccine and broadly neutralizing antibodies (bnAbs).

View Article and Find Full Text PDF

Anti-Idiotypic Antibody as a Booster Vaccine Against Respiratory Syncytial Virus.

Vaccines (Basel)

January 2025

Infectious Diseases and Vaccine Research, Merck & Co., Inc., Rahway, NJ 07065, USA.

The respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infections in children and adults. With nearly everyone infected by the age of five, there is an opportunity to develop booster vaccines that enhance B-cell immunity, promoting potent and broadly neutralizing antibodies. One potential approach involves using anti-idiotypic antibodies (anti-IDs) to mimic specific antigenic sites and enhance preexisting immunity in an epitope-specific manner.

View Article and Find Full Text PDF

The global dissemination of SARS-CoV-2 led to a worldwide pandemic in March 2020. Even after the official downgrading of the COVID-19 pandemic, infection with SARS-CoV-2 variants continues. The rapid development and deployment of SARS-CoV-2 vaccines helped to mitigate the pandemic to a great extent.

View Article and Find Full Text PDF

The continued evolution of SARS-CoV-2 variants capable of subverting vaccine and infection-induced immunity suggests the advantage of a broadly protective vaccine against betacoronaviruses (β-CoVs). Recent studies have isolated monoclonal antibodies (mAbs) from SARS-CoV-2 recovered-vaccinated donors capable of neutralizing many variants of SARS-CoV-2 and other β-CoVs. Many of these mAbs target the conserved S2 stem region of the SARS-CoV-2 spike protein, rather than the receptor binding domain contained within S1 primarily targeted by current SARS-CoV-2 vaccines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!