The outer membrane (OM) is a formidable permeability barrier that protects Gram-negative bacteria from detergents and antibiotics. It possesses exquisite lipid asymmetry, requiring the placement and retention of lipopolysaccharides (LPS) in the outer leaflet, and phospholipids (PLs) in the inner leaflet. To establish OM lipid asymmetry, LPS are transported from the inner membrane (IM) directly to the outer leaflet of the OM. In contrast, mechanisms for PL trafficking across the cell envelope are much less understood. In this review, we summarize and discuss recent advances in our understanding of PL transport, making parallel comparisons to well-established pathways for OM lipoprotein (Lol) and LPS (Lpt). Insights into putative PL transport systems highlight possible connections back to the 'Bayer bridges', adhesion zones between the IM and the OM that had been observed more than 50 years ago, and proposed as passages for export of OM components, including LPS and PLs.

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.001177DOI Listing

Publication Analysis

Top Keywords

outer membrane
8
lipid asymmetry
8
outer leaflet
8
zones bridges
4
bridges chaperones
4
chaperones phospholipid
4
phospholipid transport
4
transport bacterial
4
outer
4
bacterial outer
4

Similar Publications

Background: Ferroptosis is a cell death process that depends on iron and reactive oxygen species. It significantly contributes to cardiovascular diseases. However, its exact role in ischemic cardiomyopathy (ICM) is still unclear.

View Article and Find Full Text PDF

The tolerance and degradation characteristics of a marine oil-degrading strain Acinetobacter sp. Y9 were investigated in the presence of diesel oil and simulated radioactive nuclides (Mn, Co, Ni, Sr, Cs) at varying concentrations, as well as exposure to γ-ray radiation (Co-60). The maximum tolerable concentrations for Coand Ni were found to be 5 mg/l and 25 mg/l, respectively, while the tolerable concentrations for Mn, Sr, and Cs exceeded 400 mg/l, 1000 mg/l, and 1000 mg/l, respectively.

View Article and Find Full Text PDF

Background: One of the main issues facing public health with microbial infections is antibiotic resistance. Nanoparticles (NPs) are among the best alternatives to overcome this issue. Silver nanoparticle (AgNPs) preparations are widely applied to treat multidrug-resistant pathogens.

View Article and Find Full Text PDF

Background: Mitochondria generate the adenosine triphosphate (ATP) necessary for eukaryotic cells, serving as their primary energy suppliers, and contribute to host defense by producing reactive oxygen species. In many critical illnesses, including sepsis, major trauma, and heatstroke, the vicious cycle between activated coagulation and inflammation results in tissue hypoxia-induced mitochondrial dysfunction, and impaired mitochondrial function contributes to thromboinflammation and cell death.

Methods: A computer-based online search was performed using the PubMed and Web of Science databases for published articles concerning sepsis, trauma, critical illnesses, cell death, mitochondria, inflammation, coagulopathy, and organ dysfunction.

View Article and Find Full Text PDF

Fluorescence recovery after photobleaching (FRAP) can be employed to investigate membrane lipid mixing of vacuoles in live budding yeast cells and distinguish the fused, hemi-fused or non-fused states of these organelles under physiological conditions. Here, we describe a protocol for labeling the outer and inner leaflets of vacuoles in live cells that allow to detect hemifusion intermediates and, thus, identify components necessary for fusion pore opening.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!