AI Article Synopsis

  • Glaucoma is a major cause of blindness, and current treatments face issues like low effectiveness and poor patient adherence due to side effects.
  • Researchers created bovine serum albumin nanoparticles (BSA-NPs) coated with chitosan (CS) to enhance the delivery of tetrandrine (TET) for glaucoma treatment.
  • The optimized CS-BSA-NPs showed excellent drug encapsulation, improved corneal penetration, and biocompatibility, leading to a significant increase in drug bioavailability and sustained reduction in eye pressure in a rabbit model.

Article Abstract

Glaucoma is one of the leading causes of blindness. Therapies available suffer from several drawbacks including low bioavailability, repeated administration and poor patient compliance with adverse effects thereafter. In this study, bovine serum albumin nanoparticles (BSA-NPs) coated with chitosan(CS) were developed for the topical delivery of tetrandrine (TET) for glaucoma management. Optimized nanoparticles were prepared by desolvation. pH, BSA, CS and cross-linking agent concentrations effects on BSA-NPs colloidal properties were investigated. CS-BSA-NPs with particle size 237.9 nm and zeta potential 24 mV was selected for further evaluation. EE% exceeded 95% with sustained release profile. In vitro mucoadhesion was evaluated based on changes in viscosity and zeta potential upon incubation with mucin. transcorneal permeation was significantly enhanced for CS coated formulation. cell culture studies on corneal stromal fibroblasts revealed NPs biocompatibility with enhanced cellular uptake and improved antioxidant and anti-proliferative properties for the CS-coated formulation. Moreover, BSA-NPs were nonirritant as shown by HET-CAM test. Also, bioavailability in rabbit aqueous humor showed 2-fold increase for CS-TET-BSA-NPs compared to TET with a sustained reduction in intraocular pressure in a rabbit glaucoma model. Overall, results suggest CS-BSA-NPs as a promising platform for topical ocular TET delivery in the management of glaucoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9004496PMC
http://dx.doi.org/10.1080/10717544.2022.2058648DOI Listing

Publication Analysis

Top Keywords

bovine serum
8
serum albumin
8
albumin nanoparticles
8
zeta potential
8
glaucoma
5
chitosan-coated bovine
4
nanoparticles topical
4
topical tetrandrine
4
tetrandrine delivery
4
delivery glaucoma
4

Similar Publications

Article Synopsis
  • This study examines how serum metabolite profiles can help understand feed efficiency in lactating Holsteins and identify biomarkers for predicting residual feed intake (RFI).
  • Comparisons were made between high and low RFI cows at different lactation stages, revealing significant differences in various metabolites, especially notable changes in early and mid-lactation.
  • The findings suggest that specific metabolites, like p-Hydroxyhippuric acid and acetylornithine, could serve as effective biomarkers for predicting RFI, with models showing varying predictive accuracy across lactation stages.
View Article and Find Full Text PDF

NOTCH and IGF1 signaling systems are involved in the effects exerted by anthelminthic treatment of heifers on the bovine mammary gland.

Vet Parasitol

January 2025

Centro de Investigaciones Básicas y Aplicadas, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín, Buenos Aires 6000, Argentina; Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires, CITNOBA, UNNOBA - UNSAdA - CONICET, Monteagudo 2772, Pergamino, Buenos Aires 2700, Argentina. Electronic address:

Dairy heifers with gastrointestinal nematodes have reduced growth rates, and delayed age at puberty and milk production onset related to late mammary gland development. IGF1 and Notch signaling systems are important in this process, and an altered profile of serum IGF1 has been associated with the detrimental effect of the nematodes on parenchymal development. In this context, we aimed to study the molecular mechanisms involved in bovine mammary gland development around pre and postpuberty, focusing on proliferative and angiogenic processes that involve the Notch and IGF1 pathways.

View Article and Find Full Text PDF
Article Synopsis
  • Neurofilament light chain (Nf-L) is identified as a potential biomarker for diagnosing neurological disorders in cattle, paralleling its established role in human neurology.
  • The study found that Nf-L levels varied significantly between healthy and sick cattle, with consistent median levels detected in serum and cerebrospinal fluid (CSF) across different age groups.
  • There is a promising association between Nf-L levels in serum and CSF, particularly in cattle with neurological disorders, indicating that Nf-L could serve as a valuable diagnostic tool in veterinary practices.
View Article and Find Full Text PDF

Tofacitinib (Tof), a commercially available pan-Janus kinases inhibitor, is approved for the treatment of moderate to severe ulcerative colitis. However, its clinical application is limited due to dose-dependent systemic side effects. The present study aims to develop an efficient oral colon-targeted drug delivery systems using prebiotic pectin (Pcn) and chitosan (Csn) polysaccharides as a shell, with Tof loaded into a Bovine Serum Albumin (BSA) core, and improving it with chondroitin sulfate (Chs), thus constructing Tof@BSA-Chs-CP nanoparticles (NPs).

View Article and Find Full Text PDF

As a replacement of bisphenol A, bisphenol S (BPS) is commonly used in the wrappers and food containers of daily life. Epidemiological studies demonstrate a close link between BPS exposure and vascular diseases, where the biological activities of BPS remain scarcely known. Herein, the effects of BPS on endothelial function as well as the underlying mechanism were investigated in human umbilical vein endothelial cells (HUVECs) and mouse arteries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!