Because there are great demands of distinguishing multiple chemically similar analytes, chemical sensors for multivariate analyses have been developed rapidly in the past few decades. However, designing luminescent discriminative sensors based on a monosystem has been a challenge until now. In this work, we first develop a triemitting luminescent discriminative platform named with three different emission centers: blue-emitting center (BDC-NH), green-emitting (Tb@BDC-SO), and red-emitting center (rhodamine B, RhB). The different luminescent mechanisms (ligand emission, LMET emission, guest emission) in these emission centers endow with high cross-reactivity, which is essential for discriminating applications. To balance the three luminescent centers, all variables in the synthesis process are optimized carefully. Surprisingly, the shows a variety of luminescent response patterns when immersed into 12 inorganic anions. Two unsupervised multidimensional analysis methods, (principal component analysis and hierarchical cluster analysis), are used to explore the relationship between these anions. On the basis of the luminescent response of analytes, 5 response modes are obtained and 12 inorganic anions are classified into 6 groups. The sensing mechanisms are discussed in detail. Detection limits of typical anions CrO, PO, ClO, and NO are calculated as 2.895 × 10, 6.353 × 10, 1.134 × 10, and 4.56 × 10 mol/L, respectively. Furthermore, the also shows the ability to distinguish 4 (Fe, Fe, Cu and Cr) of 12 metal ions and 3 (Trp, Pro, and Arg) of 11 amino acids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.2c00019 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Harbin Institute of Technology, School of Chemistry and Chemical Engineering, No. 92, West Dazhi Street, 150001, Harbin, CHINA.
Commercial hard carbon (HC) anode suffers from unexpected interphase chemistry rooted in the parasitic reactions between surface oxygen-functional groups and ester-based electrolytes. Herein, an innovative strategy is proposed to regulate interphase chemistry by tailoring targeted functional groups on the HC surface, where highly active undesirable oxygen-functional groups are skillfully converted into a Si-O-Si molecular layer favorable for anchoring anions. Then, an inorganic/organic hybrid solid electrolyte interphase with low interfacial charge transfer resistance and enhanced cycling durability is constructed successfully.
View Article and Find Full Text PDFInorg Chem
January 2025
Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia.
The photoinduced reaction of [Pt(NO)] with pyridine or its derivatives (L) was found to result in the formation of [PtL](NO) salts in high yield. This transformation was successfully probed for methyl- and carboxyethyl-substituted pyridines, and the corresponding [PtL](NO) salts were isolated and fully characterized using single-crystal X-ray diffraction (SCXRD). Anation of the [Pt(py)] cationic complex with N was studied by H NMR spectroscopy in aqueous and water/dimethyl sulfoxide solutions of [Pt(py)](NO).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Regensburg, Faculty of Chemistry and Pharmacy, Institute of Inorganic Chemistry, Universitätsstraße 31, D-93053, Regensburg, GERMANY.
Aminophosphates are the focus of research on prebiotic phosphorylation chemistry. Their bifunctional nature also makes them a powerful class of organocatalysts. However, the structural chemistry and dynamics of proton-binding in phosphorylation and organocatalytic mechanisms are still not fully understood.
View Article and Find Full Text PDFDalton Trans
January 2025
Hebei Center for New Inorganic Optoelectronic Nanomaterial Research, Hebei Key Laboratory of Heterocyclic Compounds, College of Chemical Engineering and Materials, Handan University, Handan 056002, P. R. China.
The isolation of a stable persistent carbazole-stabilized boron-centered monoradical anion 1˙, which has a high spin density at the B atom, has been reported. It is characterized using the crystal structure and UV-vis absorption spectrum, as well as electron paramagnetic resonance spectroscopy. Interestingly, the B-N bond was activated by the boron-centered radical anion 1˙, which had not been reported before.
View Article and Find Full Text PDFMolecules
January 2025
Department of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
The importance of fluorine and aluminum in all aspects of daily life has led to an enormous increase in human exposure to these elements in their various forms. It is therefore important to understand the routes of exposure and to investigate and understand the potential toxicity. Of particular concern are aluminum-fluoride complexes (AlF), which are able to mimic the natural isostructural phosphate group and influence the activity of numerous essential phosphoryl transferases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!