The application of mesenchymal stem/stromal cells (MSC) in regenerative medicine offers hope for the effective treatment of incurable or difficult-to-heal diseases. However, it requires the development of unified protocols for both safe and efficient cell acquisition and clinical usage. The therapeutic effect of fat grafts (containing stem cells) in non-healing wounds has been discussed in previous studies, although the application requires local or general anaesthesia. The treatment of MSC derived from adipose tissue (ASC) could be a less invasive method, and efficient delivery could lead to more favourable outcomes, which should encourage clinicians to use such therapeutic approaches more frequently. Therefore, the aim of this study was to optimise the methods of ASC isolation, culture and administration while maintaining their high survival, proliferation and colonisation potential. The ASC were isolated by an enzymatic method and were characterised according to International Society for Cellular Therapy and International Federation for Adipose Therapeutics and Science guidelines. To assess the opportunity to obtain a sufficient number of cells for transplantation, long-term cell cultures in two oxygen concentrations (5% vs. 21%) were conducted. For these cultures, the population doubling time, the cumulative time for cell population doublings and the rate of cell senescence were estimated. In a developed and pre-defined protocol, ASC can be efficiently cultured at physiological oxygen concentrations (5%), which leads to faster proliferation and slower cell senescence. Subsequently, to select the optimal and minimally invasive methods of ASC transplantation, direct cell application with an irrigator or with skin dressings was analysed. Our results confirmed that both the presented methods of cell application allow for the safe delivery of isolated ASC into wounds without losing their vitality. Cells propagated in the described conditions and applied in non-invasive cell application (with an irrigation system and dressings) to treat chronic wounds can be a potential alternative or supplement to more invasive clinical approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9321893 | PMC |
http://dx.doi.org/10.1111/wrr.13013 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Oncode Institute, Hubrecht Institute-Royal Netherlands Academy of Arts and Science, Utrecht 3584 CT, The Netherlands.
Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016.
Posttranslational modifications (PTMs) of proteins play critical roles in regulating many cellular events. Antibodies targeting site-specific PTMs are essential tools for detecting and enriching PTMs at sites of interest. However, fundamental difficulties in molecular recognition of both PTM and surrounding peptide sequence have hindered the efficient generation of highly sequence-specific anti-PTM antibodies.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Innovative Genomics Institute, University of California, Berkeley, CA 94720.
The widespread application of genome editing to treat and cure disease requires the delivery of genome editors into the nucleus of target cells. Enveloped delivery vehicles (EDVs) are engineered virally derived particles capable of packaging and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence of lentiviral genome encapsulation and replication proteins in EDVs has obscured the underlying delivery mechanism and precluded particle optimization.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Physics, JC STEM Lab of Energy and Materials Physics, City University of Hong Kong, Hong Kong 999077, P. R. China.
Solid polymer electrolytes (SPEs) are promising candidates for lithium metal batteries (LMBs) owing to their safety features and compatibility with lithium metal anodes. However, the inferior ionic conductivity and electrochemical stability of SPEs hinder their application in high-voltage solid-state LMBs (HVSSLMBs). Here, a strategy is proposed to develop a dual-anion-rich solvation structure by implementing ferroelectric barium titanate (BTO) nanoparticles (NPs) and dual lithium salts into poly(vinylidene fluoride) (PVDF)-based SPEs for HVSSLMBs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!