Applications of genetic-based estimates of population size are expanding, especially for species for which traditional demographic estimation methods are intractable due to the rarity of adult encounters. Estimates of breeding population size (N ) are particularly amenable to genetic-based approaches as the parameter can be estimated using pedigrees reconstructed from genetic data gathered from discrete juvenile cohorts, therefore eliminating the need to sample adults in the population. However, a critical evaluation of how genotyping and sampling effort influence bias in pedigree reconstruction, and how these biases subsequently influence estimates of N , is needed to evaluate the efficacy of the approach under a range of scenarios. We simulated a model system to understand the interactive effects of genotyping and sampling effort on error in genetic pedigrees reconstructed from the program COLONY. We then evaluated how errors in pedigree reconstruction influenced bias and precision in estimates of N using three different rarefaction estimators. Results indicated that pedigree error can be minimal when adequate genetic data are available, such as when juvenile sample sizes are large and/or individuals are genotyped at many informative loci. However, even in cases for which data are limited, using results of the simulation analysis to understand the magnitude and sources of bias in reconstructed pedigrees can still be informative when estimating N . We applied results of the simulation analysis to evaluate for a population of federally endangered Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) in the Delaware River, USA. Our results indicated that N is likely to be three orders of magnitude lower compared with historic breeding population sizes, which is a considerable advancement in our understanding of the population status of Atlantic sturgeon in the Delaware River. Our analyses are broadly applicable in the design and interpretation of studies seeking to estimate N and can help to guide conservation decisions when ecological uncertainty is high. The utility of these results is expected to grow as rapid advances in genetic technologies increase the popularity of genetic population monitoring and estimation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/eap.2602 | DOI Listing |
BMC Genom Data
January 2025
Key Laboratory of State Forestry and Grassland Administration Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Ji'nan, 250103, Shandong, China.
Objectives: Toona sinensis, commonly known as Chinese toon, is a perennial woody plant with significant economic and ecological importance. This study employed whole-genome resequencing of 180 T. sinensis samples collected from Shandong to analyze genetic variation and diversity, ultimately identifying 18,231 high-quality SNPs after rigorous quality control and linkage disequilibrium pruning.
View Article and Find Full Text PDFNat Genet
January 2025
Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China.
Modern sugarcane, a highly allo-autopolyploid organism, has a very complex genome. In the present study, the karyotype and genome architecture of modern sugarcane were investigated, resulting in a genome assembly of 97 chromosomes (8.84 Gb).
View Article and Find Full Text PDFSci Adv
January 2025
College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China.
Yellow seed coat color (SCC) is a valuable trait in , which is significantly correlated to high seed oil content (SOC) and low seed lignocellulose content (SLC). However, no dominant yellow SCC genes were identified in . In this study, a dominant yellow SCC N53-2 was verified, and then 58,981 eQTLs and 25 trans-eQTL hotspots were identified in a double haploid population derived from N53-2 and black SCC material Ken-C8.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Crop Production and Landscape Management, Ebonyi State University, Abakaliki, Nigeria.
Background: Sweetpotato is a vegetatively propagated crop cultivated worldwide, predominantly in developing countries, valued for its adaptability, short growth cycle, and high productivity per unit land area. In most sub-Saharan African (SSA) countries, it is widely grown by smallholder farmers. Niger, Nigeria, and Benin have a huge diversity of sweetpotato accessions whose potential has not fully been explored to date.
View Article and Find Full Text PDFMar Biotechnol (NY)
January 2025
Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.
The Pacific oyster Crassostrea gigas is rich in taurine, a conditionally essential amino acid functioning in anti-oxidation, anti-inflammation, anti-aging, osmoregulation, and neuromodulation. Breeding oyster varieties with enhanced taurine content is significant to meet people's demand for high-quality oysters. In the present study, polymorphisms in the oyster cysteamine dioxygenase (CgADO) gene that encodes the central enzyme of the cysteamine pathway for taurine synthesis were investigated, and their association with taurine content was assessed in the Changhai (CH) and Qinhuangdao (QHD) populations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!