The oxidation of Sn(II) to the more stable Sn(IV) degrades the photovoltaic perovskite material CsSnI; however, this problem can be counteracted alkaline-earth (AE) doping. In this work, the electronic properties of CsSnAEI, with = 0 and 0.25, and AE = Mg and Ca, were investigated Density Functional Theory. It is proven that the synthetic reactions of all these perovskites are thermodynamically viable. Besides, a slight strengthening in the metal-halide bonds is found in the Mg-doped perovskite; consequently, it exhibits the greatest bulk modulus. Nevertheless, the opposite occurrs with the Ca-doped perovskite, which has the smallest bulk modulus due to the weakening of its metal-halide bonds. The calculated bandgaps for CsSnI, Mg-doped and Ca-doped perovskites are 1.11, 1.32 and 1.55 eV, respectively, remaining remarkably close to the best photovoltaic-performing value for single-junction solar cells of 1.34 eV. Nevertheless, an indirect bandgap was predicted under Mg-doping. These results support the possibility of implementing AE-doped perovskites as absorber materials in single-junction solar cells, which can deliver higher output voltages than that using CsSnI. Finally, it was found that Sr or Ba doping could result in semiconductors with bandgaps close to 2.0 eV.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1dt04041c | DOI Listing |
Small
December 2024
Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China.
Formamidine lead iodide (FAPbI) quantum dots (QDs) have attracted great attention as a new generation of photovoltaic material due to their long carrier diffusion length, benign ambient stability, and light-harvesting ability. However, its large surface area with inherent thermodynamic instability and highly defective ionic termination are still major obstacles to fabricating high-performance devices. Herein, a metallic ion dopant is developed to post-treat FAPbI QDs immediately after their fabrication by using a metal-glutamate salt solution.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
Angew Chem Int Ed Engl
November 2024
Department of Chemistry, University of Munich (LMU), Butenandtstraße 5-13, 81377, Munich, Germany.
Nitridophosphates have emerged as promising host compounds in the field of solid-state lighting. Their industrial relevance has increased significantly, mainly due to recent advances in synthetic approaches under medium-pressure (MP) conditions, including ammonothermal synthesis and hot isostatic pressing (HIP). In this study, we report on the synthesis and characterization of the quaternary representatives CaLiPN (x=2, 2.
View Article and Find Full Text PDFResearch on multifunctional luminescent materials has become an emerging trend for new applications of optical sensing, monitoring, anticounterfeiting, lighting, etc. Herein, a library of Pr-doped MY(PO) (M = Ba, Sr, Ca) phosphors was prepared for careful spectroscopic studies in potential lighting and optical temperature sensing applications. With the help of density functional theory calculation, diffuse reflectance spectra, and steady/dynamic photoluminescence spectra, the effects of alkaline earth metals on the fluorescence properties of MY(PO):Pr were studied systematically.
View Article and Find Full Text PDFInorg Chem
November 2024
CNRS, Ecole Nationale Supérieure de Chimie de Rennes (ENSCR), Institut des Sciences Chimiques de Rennes (ISCR), UMR 6226, Univ Rennes, F-35000 Rennes, France.
The possible emergence of superconductivity in layered metal boride carbide compounds MBC (M = Sc, Y, Be, Ca) was investigated using density functional theory calculations upon the topology of a boron-carbon network and the nature of the metal. ScBC and YBC show metallic and superconductive properties with low critical temperatures (s). The semiconducting BeBC compound may show superconductivity upon carrier doping with a high of 47.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!