Ectomycorrhizal fungi play a key role in forests by establishing mutualistic symbioses with woody plants. Genome analyses have identified conserved symbiosis-related traits among ectomycorrhizal fungal species, but the molecular mechanisms underlying host specificity remain poorly known. We sequenced and compared the genomes of seven species of milk-cap fungi (Lactarius, Russulales) with contrasting host specificity. We also compared these genomes with those of symbiotic and saprotrophic Russulales species, aiming to identify genes involved in their ecology and host specificity. The size of Lactarius genomes is significantly larger than other Russulales species, owing to a massive accumulation of transposable elements and duplication of dispensable genes. As expected, their repertoire of genes coding for plant cell wall-degrading enzymes is restricted, but they retained a substantial set of genes involved in microbial cell wall degradation. Notably, Lactarius species showed a striking expansion of genes encoding proteases, such as secreted ectomycorrhiza-induced sedolisins. A high copy number of genes coding for small secreted LysM proteins and Lactarius-specific lectins were detected, which may be linked to host specificity. This study revealed a large diversity in the genome landscapes and gene repertoires within Russulaceae. The known host specificity of Lactarius symbionts may be related to mycorrhiza-induced species-specific genes, including secreted sedolisins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.18143 | DOI Listing |
Nat Commun
January 2025
Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, 15782, Calle San Francisco sn, Galicia, Spain.
Mycoplasma pneumoniae causes atypical pneumonia in children and young adults. Its lack of a cell wall makes it resistant to beta-lactams, which are the first-line treatment for typical pneumonia. Current diagnostic tests are time-consuming and have low specificity, leading clinicians to administer empirical antibiotics.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Center of Infectious Diseases, West China Hospital, Sichuan University, Guoxuexiang 37, Chengdu, 610041, China.
Background: Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a severe threat for human health and urgently needs new therapeutic approaches. Lytic bacteriophages (phages) are promising clinically viable therapeutic options against CRKP. We attempted to isolate lytic phages against CRKP of sequence type 11 and capsular type 64 (ST11-KL64), the predominant type in China.
View Article and Find Full Text PDFTalanta
January 2025
Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China. Electronic address:
The growing demand for glycolate, fueled by economic development, requires the advancement of production methods. Escherichia coli (E. coli), a preferred host for glycolate production, has undergone extensive metabolic engineering to improve yield.
View Article and Find Full Text PDFBioinformatics
January 2025
Bioinformatics Lab, Advanced Research Institute for Informatics, Computing and Networking, De La Salle University, Manila, 1004, Philippines.
Motivation: Recent computational approaches for predicting phage-host interaction have explored the use of sequence-only protein language models to produce embeddings of phage proteins without manual feature engineering. However, these embeddings do not directly capture protein structure information and structure-informed signals related to host specificity.
Results: We present PHIStruct, a multilayer perceptron that takes in structure-aware embeddings of receptor-binding proteins, generated via the structure-aware protein language model SaProt, and then predicts the host from among the ESKAPEE genera.
Microbial eukaryotes (aka protists) are known for their important roles in nutrient cycling across different ecosystems. However, the composition and function of protist-associated microbiomes remains largely elusive. Here, we employ cultivation-independent single-cell isolation and genome-resolved metagenomics to provide detailed insights into underexplored microbiomes and viromes of over 100 currently uncultivable ciliates and amoebae isolated from diverse environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!