Download full-text PDF

Source
http://dx.doi.org/10.1038/s41409-022-01658-xDOI Listing

Publication Analysis

Top Keywords

chimeric antigen
4
antigen receptor
4
receptor t-cell
4
t-cell therapy
4
therapy relapsed
4
relapsed mantle
4
mantle cell
4
cell lymphoma
4
lymphoma real-world
4
real-world experience
4

Similar Publications

In the past decades, Chimeric Antigen Receptor (CAR)-T cell therapy has achieved remarkable success, leading to the approval of six therapeutic products for haematological malignancies. Recently, the therapeutic potential of this therapy has also been demonstrated in non-tumoral diseases. Currently, the manufacturing process to produce clinical-grade CAR-T cells is complex, time-consuming, and highly expensive.

View Article and Find Full Text PDF

Breast cancer will overtake all other cancers in terms of diagnoses in 2024. Breast cancer counts highest among women in terms of cancer incidence and death rates. Innovative treatment approaches are desperately needed because treatment resistance brought on by current clinical drugs impedes therapeutic efficacy.

View Article and Find Full Text PDF

Boosting CAR-T cell therapy through vaccine synergy.

Trends Pharmacol Sci

January 2025

Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA 90095, USA. Electronic address:

Chimeric antigen receptor (CAR)-T cell therapy has transformed the treatment landscape for hematological cancers. However, achieving comparable success in solid tumors remains challenging. Factors contributing to these limitations include the scarcity of tumor-specific antigens (TSAs), insufficient CAR-T cell infiltration, and the immunosuppressive tumor microenvironment (TME).

View Article and Find Full Text PDF

Retroviral gene transfer is the preferred method for stable, long-term integration of genetic material into cellular genomes, commonly used to generate chimeric antigen receptor (CAR)-T cells designed to target tumor antigens. However, the efficiency of retroviral gene transfer is often limited by low transduction rates due to low vector titers and electrostatic repulsion between viral particles and cellular membranes. To overcome these limitations, peptide nanofibrils (PNFs) can be applied as transduction enhancers.

View Article and Find Full Text PDF

Rheumatologic complications of CAR-T Cell therapy. Experience of a single center.

Semin Arthritis Rheum

December 2024

Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Immunology, CDB, Hospital Clínic, Barcelona, Spain.

Introduction: Chimeric Antigen Receptor T-cell (CAR-T) therapy has emerged as a promising treatment for hematological malignancies. However, its association with immune-related complications such as rheumatic complications, is not well defined.

Methods: We conducted a retrospective study to analyze rheumatic complications in 310 patients treated with CAR-T therapy at a single center from January 2020 to May 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!