Many patients with developmental and epileptic encephalopathies present with variants in genes coding for GABA receptors. These variants are presumed to cause loss-of-function receptors leading to reduced neuronal GABAergic activity. Yet, patients with GABA receptor variants have diverse clinical phenotypes and many are refractory to treatment despite the availability of drugs that enhance GABAergic activity. Here we show that 44 pathogenic GABRB3 missense variants segregate into gain-of-function and loss-of-function groups and respective patients display distinct clinical phenotypes. The gain-of-function cohort (n = 27 patients) presented with a younger age of seizure onset, higher risk of severe intellectual disability, focal seizures at onset, hypotonia, and lower likelihood of seizure freedom in response to treatment. Febrile seizures at onset are exclusive to the loss-of-function cohort (n = 47 patients). Overall, patients with GABRB3 variants that increase GABAergic activity have more severe developmental and epileptic encephalopathies. This paradoxical finding challenges our current understanding of the GABAergic system in epilepsy and how patients should be treated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8983652PMC
http://dx.doi.org/10.1038/s41467-022-29280-xDOI Listing

Publication Analysis

Top Keywords

clinical phenotypes
12
developmental epileptic
12
epileptic encephalopathies
12
gabaergic activity
12
gain-of-function loss-of-function
8
gabrb3 variants
8
distinct clinical
8
patients
8
patients developmental
8
cohort n patients
8

Similar Publications

Autoimmune gastritis (AIG) is a chronic inflammatory condition characterized by immune-mediated destruction of gastric parietal cells, leading to oxyntic atrophy, achlorhydria, and hypergastrinemia. While AIG was historically linked to gastric adenocarcinoma and type I neuroendocrine tumors (NETs), recent evidence suggests the risk of adenocarcinoma in AIG is lower than previously believed, particularly in Helicobacter pylori (H. pylori)-negative patients.

View Article and Find Full Text PDF

Objective: Osteoarthritis is a common joint disease caused by a variety of risk factors, and it has been found that many biochemical markers are abnormal in peripheral blood and urine of patients with OA. The aim of this study was to elucidate the causal relationship between biomarkers associated with these processes and OA using Mendelian randomization (MR) analysis.

Method: The inverse variance weighted (IVW) approach to MR was primarily used to explore causal associations between exposures and outcomes using publicly available genetic variants from large genome-wide association studies (GWAS).

View Article and Find Full Text PDF

Objective: In systemic sclerosis (SSc), absent contractility (AC) rather than ineffective esophageal motility on manometry is associated with a severe esophageal and extraintestinal phenotype. We sought to determine whether slow esophageal transit on scintigraphy associates with a comparable clinical phenotype to that of AC on manometry, as scintigraphy may serve as a noninvasive approach to risk-stratify patients with SSc.

Methods: Clinical, demographic, and serologic features were compared between patients with and without delayed esophageal transit on scintigraphy.

View Article and Find Full Text PDF

A novel model of central precocious puberty disease: Paternal MKRN3 gene-modified rabbit.

Animal Model Exp Med

January 2025

Guangdong Medical Laboratory Animal Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.

Background: Makorin ring finger protein 3 gene (MKRN3) gene mutation is the most common genetic cause of central precocious puberty (CPP) in children. Due to the lack of ideal MKRN3-modified animal model (MKRN3-modified mice enter puberty only 4-5 days earlier than normal mice), the related research is limited.

Methods: Therefore, the MKRN3-modified rabbit was developed using CRISPR (clustered regularly interspaced short palindromic repeats) gene editing technology.

View Article and Find Full Text PDF

Background: Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare life-threatening inborn error of neurotransmitter biosynthesis. It is characterized by deficient biosynthesis of neurotransmitters dopamine and serotonin, leading to catecholamines deficiency and sympathetic deprivation, while the parasympathetic system remains functional. Since 2012, gene therapy has led to clinical improvements in symptoms and motor function with a severe phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!