Objectives: To investigate the systemic sclerosis-related phenotype in fos-related antigen-1 transgenic mice and its underlying mechanisms.

Methods: Lung and skin sections of constitutive fos-related antigen-1 transgenic mice and wild-type mice were examined by tissue staining and immunohistochemistry. The tricuspid regurgitation pressure gradient was measured by transthoracic echocardiography with a Doppler technique. To assess the impact of fos-related antigen-1 expression on macrophage function, bone marrow-derived mononuclear cells were derived from mice that expressed fos-related antigen-1 under the control of doxycycline and wild-type littermates. These bone marrow-derived mononuclear cells were induced to differentiate into macrophages with or without doxycycline, and analyzed for gene and protein expression. Finally, lung explants obtained from systemic sclerosis patients and control donors were subjected to immunohistochemistry.

Results: The lungs of fos-related antigen-1 transgenic mice showed excessive fibrosis of the interstitium and thickening of vessel walls, with narrowing lumen, in an age-dependent manner. The tricuspid regurgitation pressure gradient was significantly elevated in fos-related antigen-1 transgenic versus control mice. Increased dermal thickness and the loss of subdermal adipose tissue were also observed in the fos-related antigen-1 transgenic mice. These changes were preceded by a perivascular infiltration of mononuclear cells, predominantly consisting of alternatively activated or M2 macrophages. Overexpressing fos-related antigen-1 in bone marrow-derived mononuclear cell cultures increased the expression of M2-related genes, such as , , and . Finally, fos-related antigen-1-expressing M2 macrophages were increased in the lung tissues of systemic sclerosis patients.

Conclusions: The fos-related antigen-1 transgenic mouse serves as a genetic model of systemic sclerosis that recapitulates the major vascular and fibrotic manifestations of the lungs and skin in systemic sclerosis patients. M2 polarization mediated by the up-regulation of fos-related antigen-1 may play a critical role in the development of systemic sclerosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8922645PMC
http://dx.doi.org/10.1177/2397198319838140DOI Listing

Publication Analysis

Top Keywords

fos-related antigen-1
44
antigen-1 transgenic
28
systemic sclerosis
24
transgenic mice
16
fos-related
12
bone marrow-derived
12
marrow-derived mononuclear
12
mononuclear cells
12
antigen-1
10
transgenic mouse
8

Similar Publications

FOSL1 transcriptionally dictates the Warburg effect and enhances chemoresistance in triple-negative breast cancer.

J Transl Med

January 2025

Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71, Xinmin Street, Changchun City, Jilin Province, P.R. China.

Background: Dysregulated energy metabolism has emerged as a defining hallmark of cancer, particularly evident in triple-negative breast cancer (TNBC). Distinct from other breast cancer subtypes, TNBC exhibits heightened glycolysis and aggressiveness. However, the transcriptional mechanisms of aerobic glycolysis in TNBC remains poorly understood.

View Article and Find Full Text PDF

Background: Periodontal ligament stem cell (PDLSC)-based therapy is one of the methods to assist bone regeneration. Understanding the functional regulation of PDLSCs and the mechanisms involved is a crucial issue in bone regeneration. This study aimed to explore the roles of the family with sequence similarity 96 member B (FAM96B) in the functional regulation of PDLSCs.

View Article and Find Full Text PDF

Fra-1 affects chemotherapy sensitivity by inhibiting ferroptosis in gastric cancer cells.

Cancer Drug Resist

November 2024

Cancer Research Institute, Basic School of Medicine, Central South University, Changsha 410011, Hunan, China.

Gastric cancer (GC) is one of the common malignant tumors, and most patients with advanced GC often develop chemotherapy resistance, resulting in poor chemotherapy efficacy. Therefore, it is crucial to clarify the specific mechanisms of their chemotherapy resistance. In this study, we analyzed the correlation between fos-related antigen-1 (Fra-1) and chemotherapy resistance in GC using bioinformatics, cell counting kit-8 (CCK8), and 5-ethynyl-2'-deoxyuridine (EDU) combined with flow cytometry; furthermore, we used energy metabolomics sequencing, combined with ChIP-qPCR technology, to elucidate the specific role of Fra-1 in chemotherapy resistance of GC cells and its related mechanisms.

View Article and Find Full Text PDF

CLIP170 enhancing FOSL1 expression via attenuating ubiquitin-mediated degradation of β-catenin drives renal cell carcinoma progression.

Cell Mol Life Sci

November 2024

School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China.

Protein interactions are fundamental for all cellular metabolic activities. Cytoplasmic linker protein 170 (CLIP170) plays diverse roles in cellular processes and the development of malignant tumors. Renal cell carcinoma (RCC) poses a significant challenge in oncology owing to its invasive nature, metastatic potential, high recurrence rates, and poor prognosis.

View Article and Find Full Text PDF

Fetal growth restriction (FGR) increases the risk of short-term and long-term complications. Widespread N6-methyladenosine (m6A) modifications on mRNAs have been found to be involved in various biological processes. However, the role of m6A modification in the pathogenesis of FGR remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!