The fiber architecture can significantly influence the rate of impregnation of a resin in making composites and the load-bearing ability of individual fibers on testing of the loading directions. Moreover, achieving the maximum mechanical performance of a natural fiber composite selection of yarn liner density and optimization of fabric structure and further modification of the composites remains a great challenge for the composite research community. In this study, a number of jute-based woven derivatives (plain, 2/1 twill, 3/1 twill, zigzag based on a 2/2 twill, and diamond based on a 2/2 twill) have been constructed from similar linear densities of yarn. The effect of the fabric architecture and further modification of optimized composites by applying γ-radiation is also explained in this study. The experimental results show a 54% increase in tensile strength, a 75% increase in tensile modulus, a 69% increase in flexural strength, a 124% increase in flexural modulus, and 64% increase in impact strength of twill (3/1) structured jute fiber polyester composites in comparison to other plain and twill structured composites. A further mechanical improvement of around 20-30% is possible for the optimized twill structured composites by applying γ-radiation on the composites. An FTIR, TGA, and SEM study confirms the chemical, thermal, and fractographic changes after applying the modification of composites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8973062PMC
http://dx.doi.org/10.1021/acsomega.1c06241DOI Listing

Publication Analysis

Top Keywords

composites
9
fabric architecture
8
jute fiber
8
polyester composites
8
modification composites
8
twill 3/1
8
based 2/2
8
2/2 twill
8
composites applying
8
applying γ-radiation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!