Cr(VI) from oxidation of geogenic Cr(III) minerals is gradually becoming the primary source of Cr(VI) in soils and groundwater instead of direct emissions. Thermodynamically, natural oxidants of Cr(III) are limited to O and Mn oxides. The oxidation of Cr(III) occurs commonly in oxic soils but the difference in the oxidative dissolution of Cr(III) by Mn oxides in different redox soils (especially under anoxic conditions) is not fully understood and field evidence is lacking. Here, the relationship between Cr(VI) and Mn oxides in basalt-origin soil profiles under three different redox conditions (anoxic, suboxic and oxic) was studied. The oxidative dissolution of chromite was validated by synthesising δ-MnO that was close to biogenic Mn oxides under anoxic and oxic conditions. In anoxic soils, high levels of Cr(VI) were detected in the same horizons as those where Cr(III)-minerals co-existed with Mn(III/IV) oxides, suggesting an exclusive pathway for Cr(VI) generation through oxidation by Mn oxides where there was a deficiency of other oxidants, such as O. In oxic soils, the highly abundant Fe oxides combined with Cr(III) to form Cr(III)-Fe(III) oxyhydroxides and Cr(VI) was generated mainly via slow oxidation by O. The chromite oxidation experiment results also indicated that a high abundance of Mn oxides could promote chromite oxidative dissolution to generate Cr(VI), even under anoxic conditions. Additionally, the form of Cr and the reactivity and abundance of Mn oxides and reducing agents controlled the net content of Cr(VI) in the soil. This study showed that, even under reducing conditions, Cr(III) is readily oxidised by Mn oxides to generate Cr(VI) in reductant-deficient and Mn-rich soils, which may lead to the continuous introduction of Cr(VI) into groundwater and agricultural soils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2022.128805 | DOI Listing |
Nat Commun
December 2024
Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
Coordination complexes are promising candidates for powerful electrocatalytic oxygen evolution reaction but challenges remain in favoring the kinetics behaviors through local coordination regulation. Herein, by refining the synergy of carboxylate anions and multiconjugated benzimidazole ligands, we tailor a series of well-defined and stable coordination complexes with three-dimensional supramolecular/coordinated structures. The coordinated water as potential open coordination sites can directly become intermediates, while the metal center easily achieves re-coordination with water molecules in the pores to resist lattice oxygen dissolution.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China. Electronic address:
Vanadium-based oxides hold immense promise as cathode materials for aqueous zinc-ion batteries (AZIBs); however, their practical implementation faces a significant hurdle: a prolonged activation period is typically required to achieve peak performance. This activation process, which often requires hundreds of cycles, arises from the complex behavior of mixed-valence vanadium systems. In this paper, we propose a solution based on an elegant and simple electrical activation strategy.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Portici Research Centre, P.le E. Fermi 1, Portici, 80055 Naples, Italy.
In recent years, the morphology control of semiconductor nanomaterials has been attracting increasing attention toward maximizing their functional properties and reaching their end use in real-world devices. However, the development of easy and cost-effective methods for preparing large-scale patterned semiconductor structures on flexible temperature-sensitive substrates remains ever in demand. In this study, vapor post-treatment (VPT) is investigated as a potential, simple and low-cost post-preparative method to morphologically modify gravure-printed zinc oxide (ZnO) nanoparticulate thin films at low temperatures.
View Article and Find Full Text PDFACS Earth Space Chem
December 2024
Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States.
As wildfire events become more frequent, there is a need to better understand the impact of smoke on the environment and human health. Smoke, or biomass burning aerosol (BBA), can undergo atmospheric processing changing its chemical and optical properties. We examined the interactions between four lignin pyrolysis products (catechol, syringol, syringic acid, and vanillic acid) and three BBA-relevant iron oxide mineral phases (hematite, maghemite, and magnetite) using attenuated total reflectance-Fourier transform infrared spectroscopy and dissolved iron measurements to better understand how atmospheric processing changes concentrations of soluble iron, iron oxidation state, and brown carbon abundance.
View Article and Find Full Text PDFNanoscale
December 2024
Key Laboratory of Advanced Energy Storage and Conversion of Wenzhou, Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
Lead oxides (PbO, 1 ≤ ≤ 2) are promising high-capacity and low-cost anodes for lithium ion batteries (LIBs). However, the huge lithiation-induced volume expansion of conventional large-sized PbO particles leads to severe electrode pulverization with poor cycling stability. Herein, a rare mixed-valence PbO with a unique hierarchical architecture of nanoparticle-assembled interconnected hollow spheres (denoted PbO NAHSs) is crafted by introducing polyvinylpyrrolidone (PVP) into the solution of generating β-PbO microspheres (MSs), which is exploited for the first time as a potential advanced anode material for LIBs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!