The color of plant leaves can be assessed qualitatively by color charts or after processing of digital images. This pilot study employed a novel pocket-sized sensor to obtain the color of plant leaves. In order to assess its performance, a color-dependent parameter (SPAD index) was used as the dependent variable, since there is a strong correlation between SPAD index and greenness of plant leaves. A total of 1,872 fresh and intact leaves from 13 crops were analyzed using a SPAD-502 meter and scanned using the Nix™ Pro color sensor. The color was assessed via RGB and CIELab systems. The full dataset was divided into calibration (70% of data) and validation (30% of data). For each crop and color pattern, multiple linear regression (MLR) analysis and multivariate modeling [least absolute shrinkage and selection operator (LASSO), and elastic net (ENET) regression] were employed and compared. The obtained MLR equations and multivariate models were then tested using the validation dataset based on r, R, root mean squared error (RMSE), and mean absolute error (MAE). In both RGB and CIELab color systems, the Nix™ Pro color sensor was able to differentiate crops, and the SPAD indices were successfully predicted, mainly for mango, quinoa, peach, pear, and rice crops. Validation results indicated that ENET performed best in most crops (e.g., coffee, corn, mango, pear, rice, and soy) and very close to MLR in bean, grape, peach, and quinoa. The correlation between SPAD and greenness is crop-dependent. Overall, the Nix™ Pro color sensor was a fast, sensible and an easy way to obtain leaf color directly in the field, constituting a reliable alternative to digital camera imagery and associated image processing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2022.153686DOI Listing

Publication Analysis

Top Keywords

plant leaves
16
nix™ pro
12
pro color
12
color sensor
12
color
11
pocket-sized sensor
8
color plant
8
sensor color
8
correlation spad
8
spad greenness
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!