Diverging pathophysiology in superficial siderosis with proximal upper limb amyotrophy.

J Neurol Sci

Department of Neurology and Neurological Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo 113-8510, Japan. Electronic address:

Published: May 2022

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jns.2022.120248DOI Listing

Publication Analysis

Top Keywords

diverging pathophysiology
4
pathophysiology superficial
4
superficial siderosis
4
siderosis proximal
4
proximal upper
4
upper limb
4
limb amyotrophy
4
diverging
1
superficial
1
siderosis
1

Similar Publications

Introduction: In 2020, 368 million people globally were affected by knee osteoarthritis, and prevalence is projected to increase with 74% by 2050. Relatively high rates of dissatisfactory results after total knee arthroplasty (TKA), as reported by approximately 20% of patients, may be caused by sub-optimal knee alignment and balancing. While mechanical alignment has traditionally been the goal, patient-specific alignment strategies are gaining interest.

View Article and Find Full Text PDF

Single-nucleus RNA sequencing (snRNA-seq), an alternative to single-cell RNA sequencing (scRNA-seq), encounters technical challenges in obtaining high-quality nuclei and RNA, persistently hindering its applications. Here, we present a robust technique for isolating nuclei across various tissue types, remarkably enhancing snRNA-seq data quality. Employing this approach, we comprehensively characterize the depot-dependent cellular dynamics of various cell types underlying mouse adipose tissue remodeling during obesity.

View Article and Find Full Text PDF

The human brain connectome is characterized by the duality of highly modular structure and efficient integration, supporting information processing. Newborns with congenital heart disease (CHD), prematurity, or spina bifida aperta (SBA) constitute a population at risk for altered brain development and developmental delay (DD). We hypothesize that, independent of etiology, alterations of connectomic organization reflect neural circuitry impairments in cognitive DD.

View Article and Find Full Text PDF

A reduced proportion of peripheral class-switched memory B cells (CSM-B cells) is presumed to indicate ineffective germinal activity. The extent that this finding corresponds to a plausible germinal center failure pathophysiology in patients not diagnosed with CVID or hyper IgM syndrome is not known. We asked if patients with low CSM-B cells are more likely to demonstrate failure to produce serum IgA and IgG than counterparts with nonreduced class-switched memory B cell levels, regardless of diagnosis.

View Article and Find Full Text PDF

Divergent roles of mA in orchestrating brown and white adipocyte transcriptomes and systemic metabolism.

Nat Commun

January 2025

Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, BIDMC; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA.

N-methyladenosine (mA) is among the most abundant mRNA modifications, yet its cell-type-specific regulatory roles remain unclear. Here we show that mA methyltransferase-like 14 (METTL14) differentially regulates transcriptome in brown versus white adipose tissue (BAT and WAT), leading to divergent metabolic outcomes. In humans and mice with insulin resistance, METTL14 expression differs significantly from BAT and WAT in the context of its correlation with insulin sensitivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!