The article by Andrew Huxley in this journal in 1957, "Muscle Structure and theories of Contraction" is much more than a standard review of a field. It is itself a major theoretical modelling achievement: the first mathematical model of the contractile process in skeletal muscle. That model was based on careful microscopic analysis of the striation patterns in skeletal muscles. Cited 4456 times, it holds the record for this journal.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pbiomolbio.2022.03.007DOI Listing

Publication Analysis

Top Keywords

structure theories
8
review historic
4
historic article
4
article huxley
4
huxley 1957
4
1957 muscle
4
muscle structure
4
theories contraction
4
contraction progress
4
progress biophysics
4

Similar Publications

The emerging phenomenon of digital exclusion raises an important issue that not everyone is equally engaged in and can benefit from the digital world. Older adults are particularly susceptible to digital exclusion, but a comprehensive conceptual treatment of digital exclusion in older adults is lacking in the psychology literature. In this article, we provide a taxonomy to advance the literature on digital exclusion in older adults, identifying key conceptual attributes of older adults' digital exclusion experiences by articulating both structural (i.

View Article and Find Full Text PDF

Context: This study investigates the reaction mechanism of luteolin with selenium dioxide in ethanol. Through a detailed search for transition states and thermodynamic energy calculations, it was found that the reaction proceeds via two possible pathways, leading to the formation of products P1 and P2, respectively. A common feature of both pathways is that the first elementary step results in the formation of the intermediate INT1.

View Article and Find Full Text PDF

The enduring pathogenicity of can be attributed to its lipid-rich cell wall, with mycolic acids (MAs) being a significant constituent. Different MAs' fluidity and structural adaptability within the bacterial cell envelope significantly influence their physicochemical properties, operational capabilities, and pathogenic potential. Therefore, an accurate conformational representation of various MAs in aqueous media can provide insights into their potential role within the intricate structure of the bacterial cell wall.

View Article and Find Full Text PDF

Resolving the Ambiguity of Thermal Reversion in a Nonconjugated Monocyclic Diene-Based Photoswitch for Rechargeable Solar Thermal Batteries.

J Phys Chem A

January 2025

Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana 506004, India.

We report nonconjugated monocyclic dienes (nCMDs) as unique photoswitchable molecules that hold promise for harvesting substantial solar energy and storing it for extended durations. Herein, cyclohepta-1,4-diene and its N-heterocyclic analogue have been considered as prototypical models for investigating photoswitching behavior in nCMDs. Initially, the nonradiative deactivation pathway of nCMD from the low-lying excited state to the [2 + 2]-cycloadduct has been evaluated.

View Article and Find Full Text PDF

Despite its importance in understanding biology and computer-aided drug discovery, the accurate prediction of protein ionization states remains a formidable challenge. Physics-based approaches struggle to capture the small, competing contributions in the complex protein environment, while machine learning (ML) is hampered by the scarcity of experimental data. Here, we report the development of p ML (KaML) models based on decision trees and graph attention networks (GAT), exploiting physicochemical understanding and a new experiment p database (PKAD-3) enriched with highly shifted p's.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!