AI Article Synopsis

  • A platform was developed to create small-diameter vascular grafts using a specific type of polyurethane (POSS-PCUU) enhanced with varying concentrations of POSS nanocages, aimed at improving characteristics for medical use.
  • Various analytical techniques were employed to examine the composite's properties, showing that the grafts with 6 wt.% POSS achieved the best mechanical strength and surface qualities.
  • Additionally, human endothelial cells cultured on the 6 wt.% POSS-PCUU showed increased viability and formed a stable single-layer barrier, indicating effective cell interaction and potential for vascular applications.

Article Abstract

This study developed a platform for fabricating small-diameter vascular grafts using electrospun poly(carbonate-urea)urethane bonded with different concentrations of POSS nanocage. The characteristics of electrospun POSS-PCUUs were investigated by ATR-FTIR, 1HNMR, EDS, SEM, AFM, WCA, and DSC analyses. Besides, mechanical attributes such as tensile strength, modulus, elastic recovery, and inelastic behaviors were monitored. The survival rate and cellular attachment capacity were studied using human endothelial cells during a 7-day culture period. The results showed that electrospun nanofibers with 6 wt.% POSS-PCUU had better surface properties in terms of richness of POSS nanocage with notable improved mechanical strength and hysteresis loss properties ( < 0.05). The surface roughness of electrospun 6 wt.% POSS-PCUU reached 646 ± 10 nm with statistically significant differences compared to the control PCUU and groups containing 2, 4 wt.% POSS-PCUU ( < 0.05). The addition of 6 wt.% POSS increased the ultimate mechanical strength of nanofibers related to control PCUU and other groups ( < 0.05). The expansion of human endothelial cells on the 6 wt.% POSS-PCUU surface increased the viability reaching maximum levels on day 7 ( < 0.05). Immunofluorescence imaging using DAPI staining displayed the formation single-layer endothelial barrier at the luminal surface, indicating an appropriate cell-to-cell interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09205063.2022.2059741DOI Listing

Publication Analysis

Top Keywords

small-diameter vascular
8
vascular grafts
8
poss nanocage
8
electrospun
4
electrospun poss
4
poss integrated
4
integrated polycarbonate-ureaurethane
4
polycarbonate-ureaurethane appropriate
4
appropriate surface
4
surface mechanical
4

Similar Publications

This study aimed to investigate the macroscopic, light microscopic (LM) and scanning electron microscopic (SEM) characteristics of the pecten oculi in common kestrels (Falco tinnunculus). A total of six eyeballs from three common kestrels were used as the study material. The examination revealed that the bulbus oculi was spherical in shape and its diameter exceeded the axial-global length.

View Article and Find Full Text PDF

Passivated hydrogel interface: Armor against foreign body response and inflammation in small-diameter vascular grafts.

Biomaterials

December 2024

Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China. Electronic address:

The development of small-diameter vascular grafts (SDVGs) still faces significant challenges, particularly in overcoming blockages within vessels. A key issue is the foreign-body response (FBR) triggered by the implants, which impairs the integration between grafts and native vessels. In this study, we applied an interfacial infiltration strategy to create a stable, hydrophilic, and passivated hydrogel coating on SDVGs.

View Article and Find Full Text PDF

A computational framework to optimize the mechanical behavior of synthetic vascular grafts.

J Mech Behav Biomed Mater

December 2024

Department of Biomedical Engineering, The University of Utah, 36 S Wasatch Dr, Salt Lake City, UT, 84112, USA; Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St, College Station, TX, 77843, USA; Scientific Computing and Imaging Institute, The University of Utah, 72 Central Campus Dr, Salt Lake City, UT, 84112, USA; School of Engineering Medicine, Texas A&M University, 1020 Holcombe Blvd., Houston, TX, 77030, USA; Department of Multidisciplinary Engineering, Texas A&M University, 101 Bizzell St, College Station, TX, 77843, USA; Department of Cardiovascular Sciences, Houston Methodist Academic Institute, 6565 Fannin Street, Houston, TX, 77030, USA. Electronic address:

The failure of synthetic small-diameter vascular grafts has been attributed to a mismatch in the compliance between the graft and native artery, driving mechanisms that promote thrombosis and neointimal hyperplasia. Additionally, the buckling of grafts results in large deformations that can lead to device failure. Although design features can be added to lessen the buckling potential (e.

View Article and Find Full Text PDF

Application of subcutaneous extracellular matrix to prepare bilayer heparin-coated polycaprolactone/decellularized small-diameter vascular graft for tissue regeneration.

Int J Biol Macromol

December 2024

Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing 100053,China. Electronic address:

In clinical practice, the demand for functional small-diameter vascular grafts continues to increase. In this study, a decellularized aorta artery was inserted into a poly(caprolactone) (PCL) vascular scaffold for self-assembly in-vitro to create a hybrid scaffold. The hybrid scaffold was then implanted subcutaneously into the dorsal flanks and the subcutaneous extracellular matrix was applied for bilayer adhesion.

View Article and Find Full Text PDF

Multifunctional hybrid poly(ester-urethane)urea/resveratrol electrospun nanofibers for a potential vascularizing matrix.

Soft Matter

December 2024

Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, P. R. China.

Article Synopsis
  • The study addresses challenges in using small-diameter vascular grafts, such as thrombosis and inflammation, by creating a suitable microenvironment through advanced materials.
  • Researchers developed a hybrid material by blending poly(ester-urethane)urea (PEUU) with varying levels of resveratrol, tested these for properties like mechanical strength and biocompatibility, and discovered that resveratrol enhances the performance of the graft.
  • The findings demonstrate that the optimal formulation (P/R-1.0) effectively supports endothelial cell growth and neovascularization, making it a promising candidate for improving vascular graft performance.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!