The fungal pathogen secretes the peptide toxin candidalysin, which damages epithelial cells and drives an innate inflammatory response mediated by the epidermal growth factor receptor (EGFR) and mitogen-activated protein kinase (MAPK) pathways and the transcription factor c-Fos. In cultured oral epithelial cells, candidalysin activated the MAPK p38, which resulted in heat shock protein 27 (Hsp27) activation, IL-6 release, and EGFR phosphorylation without affecting the induction of c-Fos. p38 activation was not triggered by EGFR but by two nonredundant pathways involving MAPK kinases (MKKs) and the kinase Src, which differentially controlled p38 signaling outputs. Whereas MKKs mainly promoted p38-dependent release of IL-6, Src promoted p38-mediated phosphorylation of EGFR in a ligand-independent fashion. In parallel, candidalysin also activated the EGFR-ERK pathway in a ligand-dependent manner, resulting in c-Fos activation and release of the neutrophil-activating chemokines G-CSF and GM-CSF. In mice, early clearance events of oral infection required p38 but not c-Fos. These findings delineate how candidalysin activates the pathways downstream of the MAPKs p38 and ERK that differentially contribute to immune activation during infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612652PMC
http://dx.doi.org/10.1126/scisignal.abj6915DOI Listing

Publication Analysis

Top Keywords

toxin candidalysin
8
epithelial cells
8
candidalysin activated
8
p38
6
candidalysin mediates
4
mediates distinct
4
distinct epithelial
4
epithelial inflammatory
4
inflammatory responses
4
responses p38
4

Similar Publications

Background: Candidalysin has been isolated initially from a pathogenic human fungus. The extent of cell elongation 1 (ECE1) gene codes for candidalysin of Candida albicans (C. albicans).

View Article and Find Full Text PDF

EGR1 regulates oral epithelial cell responses to via the EGFR- ERK1/2 pathway.

Virulence

December 2024

Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK.

is a fungal pathobiont colonizing mucosal surfaces of the human body, including the oral cavity. Under certain predisposing conditions, invades mucosal tissues activating EGFR-MAPK signalling pathways in epithelial cells via the action of its peptide toxin candidalysin. However, our knowledge of the epithelial mechanisms involved during colonization is rudimentary.

View Article and Find Full Text PDF

DNA damage repair is a crucial cellular mechanism for rectifying DNA lesions arising during growth and development. Among the various repair pathways, postreplication repair (PRR) plays a pivotal role in resolving single-stranded gaps induced by DNA damage. However, the contribution of PRR to virulence remains elusive in the fungal pathogen .

View Article and Find Full Text PDF

is a leading cause of life-threatening invasive infections with up to 40% mortality rates in hospitalized individuals despite antifungal therapy. Patients with chronic liver disease are at an increased risk of candidemia, but the mechanisms underlying this susceptibility are incompletely defined. One consequence of chronic liver disease is attenuated ability to produce hepcidin and maintain organismal control of iron homeostasis.

View Article and Find Full Text PDF
Article Synopsis
  • Candidalysin, produced by Candida albicans, is a virulence factor that damages host cells, and this study identified specific genes related to glycosaminoglycan (GAG) biosynthesis that, when disrupted, confer resistance to this damage.
  • Researchers found that candidalysin binds to sulfated GAGs on the host cell surface, which helps it to cause damage, but adding exogenous sulfated GAGs like dextran sulfate can protect cells and inhibit candidalysin's effects.
  • In a mouse model of vulvovaginal candidiasis, applying dextran sulfate reduced tissue damage and inflammation, suggesting sulfated GAGs are potential therapeutic targets to counteract candidalysin-related damage.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!