A series of aromatic helix-sheet-helix oligoamide foldamers composed of several different photosensitive diazaanthracene units have been designed and synthesized. Molecular objects up to 7 kDa were straightforwardly produced on a 100 mg scale. Nuclear magnetic resonance and crystallographic investigations revealed that helix-sheet-helix architectures can adopt one or two distinct conformations. Sequences composed of an even number of turn units were found to fold in a canonical symmetrical conformation with two helices of identical handedness stacked above and below the sheet segment. Sequences composed of an odd number of turns revealed a coexistence between a canonical fold with helices of opposite handedness and an alternate fold with a twist within the sheet and two helices of identical handedness. The proportions between these species could be manipulated, in some cases quantitatively, being dependent on solvent, temperature, and absolute control of helix handedness. Diazaanthracene units were shown to display distinct reactivity toward [4 + 4] photocycloadditions according to the substituent in position 9. Their organization within the sequences was programmed to allow photoreactions to take place in a specific order. Reaction pathways and kinetics were deciphered and product characterized, demonstrating the possibility to orchestrate successive photoreactions so as to avoid orphan units or to deliberately produce orphan units at precise locations. Strong cooperative effects were observed in which the photoreaction rate was influenced by the presence (or absence) of photoadducts in the structure. Multiple photoreactions within the aromatic sheet eventually lead to structure lengthening and stiffening, locking conformational equilibria. Photoproducts could be thermally reverted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.2c01269 | DOI Listing |
J Am Chem Soc
April 2022
Univ. Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), 2 rue Escarpit, 33600 Pessac, France.
A series of aromatic helix-sheet-helix oligoamide foldamers composed of several different photosensitive diazaanthracene units have been designed and synthesized. Molecular objects up to 7 kDa were straightforwardly produced on a 100 mg scale. Nuclear magnetic resonance and crystallographic investigations revealed that helix-sheet-helix architectures can adopt one or two distinct conformations.
View Article and Find Full Text PDFAdv Mater
July 2017
Laboratory of Polymer Chemistry, Swiss Federal Institute of Technology (ETH Zurich), Vladimir-Prelog-Weg 5, Zurich, 8093, Switzerland.
A Langmuir-Blodgett film consisting of a dense array of trifunctional monomers bearing three 1,8-diazaanthracene units is polymerized at an air/water interface or after transfer on solid substrates. The transfer does not affect the excimer fluorescence of the film, indicating that the monomers' packing with their diazaanthracene units stacked face-to-face is retained-a prerequisite for successful polymerization. The monomer film can be polymerized in confined areas on solid substrates by UV irradiation with a confocal microscope laser.
View Article and Find Full Text PDFACS Macro Lett
February 2014
Laboratory of Polymer Chemistry, Department of Materials, Swiss Federal Institute of Technology, ETH Zürich, HCI J 541, CH-8093 Zürich, Switzerland.
The shape-persistent monomer with its three 1,8-diazaanthracene (DAA) units is spread and compressed at the air/water interface and the layer then converted into a 1.5 nm thick covalent monolayer sheet by photoirradiation under ambient conditions. The sheet obtained under these extremely mild conditions is mechanically stable to carry its own weight when spanned over TEM grids.
View Article and Find Full Text PDFJ Org Chem
March 2014
University of Bordeaux, CBMN (UMR 5248), Institut Européen de Chimie Biologie, 2 rue Robert Escarpit, 33600 Pessac, France.
The synthesis of a variety of 9-functionalized 1,8-diazaanthracene diesters and amino acids is described. Derivatization at the 9-position relies on facile reactions performed on the 9-chloro and 9-bromomethyl precursors. This has allowed the incorporation of nucleophilic or sensitive functional groups that otherwise cannot be incorporated under standard methods for synthesizing these compounds.
View Article and Find Full Text PDFChemistry
September 2013
Laboratory for Polymer Chemistry, Department of Materials, ETH Zurich, HCI J541, Wolfgang-Pauli-Strasse 10, 8093 Zürich (Switzerland).
The synthesis of four shape-persistent macrocycles with three 1,8-diazaanthracene units each is reported (2,3 a-3 c). For two of them single crystals could be obtained and the structures in the crystal be solved. The structures reveal that macrocycle 2 self-dimerizes in the solid state; surprisingly it also forms a stable dimer in solution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!