Corneal neovascularization (CNV) is a common disease that affects the vision ability of more than 1 million people annually. Small interfering RNA (siRNA) delivery nanoparticle platforms are a promising therapeutic modality for CNV treatment. However, the efficient delivery of siRNA into cells and the effective release of siRNA from delivery vehicles in a particular cell type challenge effective RNAi clinical application for CNV suppression. This study reports the design of a novel reactive oxygen species (ROS)-responsive lipid nanoparticle for siRNA delivery into corneal lesions for enhanced RNAi as a potential CNV treatment. We demonstrated that lipid nanoparticles could efficiently deliver siRNA into human umbilical vein endothelial cells and release siRNA for enhanced gene silencing by using the upregulated ROS of CNV to promote lipid nanoparticle degradation. Moreover, the subconjunctival injection of siRNA nanocomplexes into corneal lesions effectively knocked down vascular endothelial growth factor expression and suppressed CNV formation in an alkali burn model. Thus, we believe that the strategy of using ROS-responsive lipid nanoparticles for enhanced RNAi in CNV could be further extended to a promising clinical therapeutic approach to attenuate CNV formation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c23412DOI Listing

Publication Analysis

Top Keywords

lipid nanoparticles
12
sirna delivery
12
reactive oxygen
8
effective rnai
8
corneal neovascularization
8
cnv
8
cnv treatment
8
release sirna
8
ros-responsive lipid
8
lipid nanoparticle
8

Similar Publications

Glucocorticoid pre-administration improves LNP-mRNA mediated protein replacement and genome editing therapies.

Int J Pharm

January 2025

Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu 610041, Sichuan, China. Electronic address:

Lipid nanoparticles (LNPs) are among the most promising non-viral mRNA delivery systems for gene therapeutic applications. However, the in vivo delivery of LNP-mRNA remains challenging due to multiple intrinsic barriers that hinder LNPs from reaching their target cells. In this study, we sought to enhance LNP delivery by manipulating intrinsic regulatory mechanisms involved in their metabolism.

View Article and Find Full Text PDF

On the formation and stability mechanisms of diverse lipid-based nanostructures for drug delivery.

Adv Colloid Interface Sci

January 2025

Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia.

In the evolving landscape of nanotechnology and pharmaceuticals, lipid nanostructures have emerged as pivotal areas of research due to their unique ability to mimic biological membranes and encapsulate active molecules. These nanostructures offer promising avenues for drug delivery, vaccine development, and diagnostic applications. This comprehensive review explores the complex mechanisms underlying the formation and stability of various lipid nanostructures, including lipid liquid crystalline nanoparticles and solid lipid nanoparticles.

View Article and Find Full Text PDF

Aim: Abemaciclib (ABE) is an anticancer drug that suffers from low bioavailability and multidrug resistance. This study aims to develop ABE-loaded solid lipid nanoparticles (ABE-SLNs), which will enhance drug solubility and lead to increased cellular uptake and enhanced cytotoxicity when delivering tumor cells.

Methods: Melt emulsification followed by ultrasonication was used as a method of preparation and Quality-by-Design (QbD) was utilized to optimize ABE-SLNs.

View Article and Find Full Text PDF

Imaging Single Particle Profiler to Study Nanoscale Bioparticles Using Conventional Confocal Microscopy.

Nano Lett

January 2025

Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Tomtebodavägen 23, 17165 Solna, Sweden.

Single particle profiling (SPP) is a unique methodology to study nanoscale bioparticles such as liposomes, lipid nanoparticles, extracellular vesicles, and lipoproteins in a single particle and high throughput manner. The initial version requires the single photon counting modules for data acquisition, which limits its adoptability. Here, we present imaging-based SPP (iSPP) that can be performed by imaging a spot over time in the common imaging mode with confocal detectors.

View Article and Find Full Text PDF

Intelligent Design of Lipid Nanoparticles for Enhanced Gene Therapeutics.

Mol Pharm

January 2025

ZJU-Hangzhou Global Scientific and Technological Innovation Canter, Zhejiang University, Hangzhou, Zhejiang 311215, China.

Lipid nanoparticles (LNPs) are an effective delivery system for gene therapeutics. By optimizing their formulation, the physiochemical properties of LNPs can be tailored to improve tissue penetration, cellular uptake, and precise targeting. The application of these targeted delivery strategies within the LNP framework ensures efficient delivery of therapeutic agents to specific organs or cell types, thereby maximizing therapeutic efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!