Periodic gene expression dynamics are key to cell and organism physiology. Studies of oscillatory expression have focused on networks with intuitive regulatory negative feedback loops, leaving unknown whether other common biochemical reactions can produce oscillations. Oscillation and noise have been proposed to support mammalian progenitor cells' capacity to restore heterogenous, multimodal expression from extreme subpopulations, but underlying networks and specific roles of noise remained elusive. We use mass-action-based models to show that regulated RNA degradation involving as few as two RNA species-applicable to nearly half of human protein-coding genes-can generate sustained oscillations without explicit feedback. Diverging oscillation periods synergize with noise to robustly restore cell populations' bimodal expression on timescales of days. The global bifurcation organizing this divergence relies on an oscillator and bistable switch which cannot be decomposed into two structural modules. Our work reveals surprisingly rich dynamics of post-transcriptional reactions and a potentially widespread mechanism underlying development, tissue regeneration, and cancer cell heterogeneity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9023291 | PMC |
http://dx.doi.org/10.1093/nar/gkac217 | DOI Listing |
Hematology
December 2025
Department of Hematology, XuChang Central Hospital, XuChang, People's Republic of China.
Introduction: Mitochondria and angiogenesis play key roles in multiple myeloma (MM) development, but their interrelated genes affecting MM prognosis are under-studied.
Methods: We analyzed TCGA_MMRF and GSE4581 datasets to identify four genes - CCNB1, CDC25C, HSP90AA1, and PARP1 - that significantly correlate with MM prognosis, with high expression indicating poor outcomes.
Results: A prognostic signature based on these genes stratified patients into high- and low-risk groups, with the latter showing better survival.
J Cachexia Sarcopenia Muscle
February 2025
Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea.
Background: The cellular prion protein (PrP), a glycoprotein encoded by the PRNP gene, is known to modulate muscle mass and exercise capacity. However, the role of PrP in the maintenance and regeneration of skeletal muscle during ageing remains unclear.
Methods: This study investigated the change in PrP expression during muscle formation using C2C12 cells and evaluated muscle function in Prnp wild-type (WT) and knock-out (KO) mice at different ages (1, 9 and 15 months).
J Dent Sci
January 2025
Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Background/purpose: Oral lichen planus (OLP) is a chronic inflammatory disorder characterized by basement membrane disruption, which plays a crucial role in its pathogenesis. Matrix metalloproteinases (MMPs), a group of proteolytic enzymes, contribute to the degradation of the basement membrane. The specific MMPs secreted by keratinocytes in OLP lesions and relevant regulatory mechanisms are not fully understood.
View Article and Find Full Text PDFJ Dent Sci
January 2025
Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan.
Background/purpose: Peroxisome proliferator-activated receptor γ (PPARγ) is a major transcription factor of energy metabolism-associated genes, and three PPARγ isoforms have been identified in periodontal tissues and cells. When energy metabolism homeostasis is affected by PPARγ downregulation in periodontal ligament fibroblasts (PDLFs), osteo/cementogenic abilities are markedly lost. Herein, we investigated whether PPARγ agonists promote periodontal tissue regeneration, and which PPARγ isoforms and metabolic pathways are indispensable for osteo/cementogenic abilities.
View Article and Find Full Text PDFLife Metab
December 2024
Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a metabolic disease that can progress to metabolic dysfunction-associated steatohepatitis (MASH), cirrhosis, and cancer. The zonal distribution of biomolecules in the liver is implicated in mediating the disease progression. Recently, G-protein-coupled receptor 35 (GPR35) has been highlighted to play a role in MASLD, but the precise mechanism is not fully understood, particularly, in a liver-zonal manner.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!