Label-free proteomics with trace clinical samples provides a wealth of actionable insights for personalized medicine. Clinically acquired primary cells, such as circulating tumor cells (CTCs), are usually with low abundance that is prohibitive for conventional label-free proteomics analysis. Here, we present a sickle-like inertial microfluidic system for online rare cell separation and tandem label-free proteomics (namely, Orcs-proteomics). Orcs-proteomics adopts a buffer system with 0.1% -dodecyl β-d-maltoside (DDM), 1 mM Tris (2-carboxyethyl) phosphine (TCEP), and 2 mM 2-chloroacetamide (CAA) for cell lysis and reductive alkylation. We demonstrate the application of Orcs-proteomics with 293T cells and manage to identify 913, 1563, 2271, and 2770 protein groups with 4, 13, 68, and 119 cells, respectively. We then spike MCF7 cells with white blood cells (WBCs) to simulate the patient's blood sample. Orcs-proteomics identifies more than 2000 protein groups with an average of 61 MCF7 cells. We further recruit two advanced breast cancer patients and collect 5 and 7 CTCs from each patient through minimally invasive blood drawing. Orcs-proteomics manages to identify 973 and 1135 protein groups for each patient. Therefore, Orcs-proteomics empowers rare cells simultaneously to be separated and counted for proteomics and provides technical support for personalized treatment decision making with rare primary patient samples.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.2c00679DOI Listing

Publication Analysis

Top Keywords

label-free proteomics
12
protein groups
12
sickle-like inertial
8
inertial microfluidic
8
microfluidic system
8
system online
8
online rare
8
rare cell
8
cell separation
8
separation tandem
8

Similar Publications

A Proteomic Study Based on Home Quarantine Model Identifies NQO1 and Inflammation Pathways Involved in Adenoid Hypertrophy.

J Inflamm Res

January 2025

Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.

Background: Adenoid hypertrophy is a common disorder of childhood, and has an unclear pathogenesis. At the beginning of the COVID-19 pandemic, there was a significant reduction in the incidence of adenoid hypertrophy in children under long-term home quarantine, providing a rare research model to explore the pathogenesis and treatment targets of adenoidal hypertrophy in children.

Methodology: Before and during the home quarantine period, adenoids that underwent surgery were detected using label-free proteomics.

View Article and Find Full Text PDF

Proteomics and metabolomics analyses of mechanism underlying bovine sperm cryoinjury.

BMC Genomics

January 2025

College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China.

Background: The cryoinjury of semen during cryopreservation reduces sperm motility, constraining the application of artificial insemination (AI) in bovine reproduction. Some fertility markers, related to sperm motility before and after freezing have been identified. However, little is known about the biological mechanism through which freezing reduces sperm motility.

View Article and Find Full Text PDF

We introduce here a novel approach, termed time-segmented acquisition (Seg), to enhance the identification of peptides and proteins in trapped ion mobility spectrometry (TIMS)-time-of-flight (TOF) mass spectrometry. Our method exploits the positive correlation between ion mobility values and reversed-phase liquid chromatography (LC) retention time to improve ion separation and resolution. By dividing the LC retention time into multiple segments and applying a segment-specific narrower ion mobility range within the TIMS tunnel, we achieved better separation and higher resolution of ion mobility.

View Article and Find Full Text PDF

Phosphoproteomic analysis of X-ray-irradiated planarians provides novel insights into the DNA damage response.

Int J Biol Macromol

January 2025

College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, PR China. Electronic address:

Phosphorylation plays a crucial role in the cellular response to radiation and cancer therapies, yet phosphoproteomics studies in planarians remain underexplored despite the organism's remarkable regenerative capacities. This study utilized advanced ion mobility mass spectrometry for 4D-label-free quantitative proteomics to identify phosphorylation sites associated with irradiation in planarians. A total of 33,284 phosphorylation sites from 15,505 phosphorylated peptides and 4710 unique phosphoproteins were identified.

View Article and Find Full Text PDF

Lanthanide Metal-Organic Framework Flowers for Proteome Profiling and Biomarker Identification in Ultratrace Biofluid Samples.

ACS Nano

January 2025

Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China.

Identifying effective biomarkers has long been a persistent need for early diagnosis and targeted therapy of disease. While mass spectrometry-based label-free proteomics with trace cell has been demonstrated, deep proteomics with ultratrace human biofluid remains challenging due to low protein concentration, extremely limited patient sample volume, and substantial protein contact losses during preprocessing. Herein, we proposed and validated lanthanide metal-organic framework flowers (MOF-flowers), as effective materials, to trap and enrich protein in biofluid jointly through cation-π interaction and O-Ln coordination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!