The development of linkage chemistry in the research area of covalent organic frameworks (COFs) is fundamentally important for creating robust structures with high crystallinity and diversified functionality. We reach herein a new level of complexity and controllability in linkage chemistry by achieving the first synthesis of fused-ring-linked COFs. A series of bicyclic pyrano[4,3-]pyridine COFs have been constructed via a cascade protocol involving Schiff-base condensation, intramolecular [4 + 2] cycloaddition, and dehydroaromatization. With a broad scope of Brønsted or Lewis acids as the catalyst, the designed monomers, that is, -propargylic salicylaldehydes and multitopic anilines, were converted into the fused-ring-linked frameworks in a one-pot fashion. The obtained COFs exhibited excellence in terms of purity, stability, and crystallinity, as comprehensively characterized by solid-state nuclear magnetic resonance (NMR) spectroscopy, powder X-ray diffraction, high-resolution transmission electron microscopy, and so on. Specifically, the highly selective formation (>94%) of pyrano[4,3-]pyridine linkage was verified by quantitative NMR measurements combined with C-labeling synthesis. Moreover, the fused-ring linkage possesses fully locked conformation, which benefits to the high crystallinity observed for these COFs. Advancing the linkage chemistry from the formation of solo bonds or single rings to that of fused rings, this study has opened up new possibilities for the concise construction of sophisticated COF structures with high controllability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.2c02173 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!