AI Article Synopsis

  • SARS-CoV-2, the virus responsible for the COVID-19 pandemic, led to significant global health issues since late 2019.
  • This study explores developing a multi-epitope peptide vaccine using immuno-informatics, identifying specific CD8 and CD4 T cell epitopes from key viral proteins that can stimulate an immune response.
  • Three promising CD8 and CD4 T cell epitopes were found that could serve as efficient targets for vaccine development, potentially allowing pharmaceutical companies to create cost-effective peptide vaccines to help combat COVID-19 after appropriate clinical trials.

Article Abstract

The novel virus "severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)" has been responsible for the worldwide pandemic causing huge devastation and deaths since December 2019. The disease caused by this virus is known as COVID-19. The present study is based on immuno-informatics approach to develop a multi-epitope-loaded peptide vaccine to combat the COVID-19 menace. Here, we have reported the 9-mer CD8 T cell epitopes and 15-mer CD4 T cell epitopes, free from glycosylation sites, belonging to three proteins, viz. surface glycoprotein, membrane glycoprotein and envelope protein of this virus. Immunogenicity, aliphatic amino acid, antigenicity and hydrophilicity scores of the predicted epitopes were estimated. In addition, other physicochemical parameters, namely net charge, Boman index and amino acid contents, were also accounted. Out of all the epitopes, three CD8 T cell epitopes viz. PDPSKPSKR, DPSKPSKRS and QTQTNSPRR and three CD4 T cell epitopes viz. ASYQTQTNSPRRARS, RIGNYKLNTDHSSSS and RYRIGNYKLNTDHSS were found to be efficient targets for raising immunity in human against this virus. With the help of our identified potent epitopes, various pharma industries might initiate efforts to incorporate those epitopes with carrier protein or adjuvant to develop a multi-epitope-loaded peptide vaccine against SARS-CoV-2. The peptide vaccines are usually cost-effective and therefore, could be administered as a preventive measure to combat the spread of this disease. Proper clinical trials must be conducted prior to the use of identified epitopes as vaccine candidates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8980513PMC
http://dx.doi.org/10.1007/s00203-022-02845-6DOI Listing

Publication Analysis

Top Keywords

cell epitopes
20
cd4 cell
12
peptide vaccine
12
epitopes
10
develop multi-epitope-loaded
8
multi-epitope-loaded peptide
8
cd8 cell
8
amino acid
8
cell
5
identification promising
4

Similar Publications

The cis-regulatory elements encoded in an mRNA determine its stability and translational output. While there has been a considerable effort to understand the factors driving mRNA stability, the regulatory frameworks governing translational control remain more elusive. We have developed a novel massively parallel reporter assay (MPRA) to measure mRNA translation, named Nascent Peptide Translating Ribosome Affinity Purification (NaP-TRAP).

View Article and Find Full Text PDF

Parainfluenza virus 3 (PIV3) infection poses a substantial risk to vulnerable groups including infants, the elderly, and immunocompromised individuals, and lacks effective treatments or vaccines. This study focuses on targeting the hemagglutinin-neuraminidase (HN) protein, a structural glycoprotein of PIV3 critical for viral infection and egress. With the objective of targeting these activities of HN, we identified eight neutralizing human monoclonal antibodies (mAbs) with potent effects on viral neutralization, cell-cell fusion inhibition, and complement deposition.

View Article and Find Full Text PDF

CD73, an ectoenzyme responsible for adenosine production, is often elevated in immuno-suppressive tumor environments. Inhibition of CD73 activity holds great promise as a therapeutic strategy for CD73-expressing cancers. In this study, we have developed a therapeutic anti-human CD73 antibody cocktail, HB0045.

View Article and Find Full Text PDF

Introduction: Alzheimer's disease (AD), primary age-related tauopathy (PART), and chronic traumatic encephalopathy (CTE) all feature hyperphosphorylated tau (p-tau)-immunoreactive neurofibrillary degeneration, but differ in neuroanatomical distribution and progression of neurofibrillary degeneration and amyloid beta (Aβ) deposition.

Methods: We used Nanostring GeoMx Digital Spatial Profiling to compare the expression of 70 proteins in neurofibrillary tangle (NFT)-bearing and non-NFT-bearing neurons in hippocampal CA1, CA2, and CA4 subregions and entorhinal cortex of cases with autopsy-confirmed AD (n = 8), PART (n = 7), and CTE (n = 5).

Results: There were numerous subregion-specific differences related to Aβ processing, autophagy/proteostasis, inflammation, gliosis, oxidative stress, neuronal/synaptic integrity, and p-tau epitopes among these different disorders.

View Article and Find Full Text PDF

Cystic echinococcosis (CE) is a worldwide zoonotic public health issue. The reasons for this include a lack of specific therapy options, increasing antiparasitic drug resistance, a lack of control strategies, and the absence of an approved vaccine. The aim of the current study is to develop a multiepitope vaccine against CE by in-silico identification and using different Antigen B subunits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!