A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Relating emotional variables to recognition memory performance: a large-scale re-analysis of megastudy data. | LitMetric

The megastudy paradigm has become an important tool for cognitive science. One advantage to the megastudy is that existing data can be reanalysed in light of novel hypotheses. In the current study, recognition memory data for 4819 words were obtained. Multiple regression analyses assessed the influence of emotional variables on recognition memory performance (i.e., hits minus false alarm rates H-FAs) for the words. The predictor variables included valence, arousal, extremity of valence (the degree of negative or positive meaning), context valence (the degree to which a word typically appears in positive or negative contexts), context arousal (how emotionally reactive are contexts in which the word appears), and context extremity of valence (the degree of this typical emotional context). This study extended earlier work by implementing more thorough controls, maximising the number of words, assessing a more comprehensive set of emotional variables, and introducing the context extremity of valence variable. We found extremity of valence, context extremity of valence, context valence, and context arousal all were significant predictors of H-FAs. We interpret the results in terms of the dual-coding theory and hub and spoke model. We also explain how single-process models could accommodate the results in terms of context diversity.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09658211.2022.2055080DOI Listing

Publication Analysis

Top Keywords

extremity valence
20
emotional variables
12
recognition memory
12
valence degree
12
context extremity
12
valence context
12
context
9
variables recognition
8
memory performance
8
valence
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!