Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) have been reported to exhibit immature embryonic or fetal cardiomyocyte-like phenotypes. To enhance the maturation of hESC-CMs, we identified a natural steroidal alkaloid, tomatidine, as a new substance that stimulates the maturation of hESC-CMs. Treatment of human embryonic stem cells with tomatidine during cardiomyocyte differentiation stimulated the expression of several cardiomyocyte-specific markers and increased the density of T-tubules. Furthermore, tomatidine treatment augmented the number and size of mitochondria and enhanced the formation of mitochondrial lamellar cristae. Tomatidine treatment stimulated mitochondrial functions, including mitochondrial membrane potential, oxidative phosphorylation, and ATP production, in hESC-CMs. Tomatidine-treated hESC-CMs were more sensitive to doxorubicin-induced cardiotoxicity than the control cells. In conclusion, the present study suggests that tomatidine promotes the differentiation of stem cells to adult cardiomyocytes by accelerating mitochondrial biogenesis and maturation and that tomatidine-treated mature hESC-CMs can be used for cardiotoxicity screening and cardiac disease modeling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9076832PMC
http://dx.doi.org/10.1038/s12276-022-00746-8DOI Listing

Publication Analysis

Top Keywords

human embryonic
12
embryonic stem
12
stem cell-derived
8
cell-derived cardiomyocytes
8
maturation hesc-cms
8
stem cells
8
tomatidine treatment
8
hesc-cms
6
mitochondrial
5
tomatidine
5

Similar Publications

The redox imbalance, caused by depletion or generation of reactive oxygen species (ROS), is a key mechanism by which metal complexes exert anticancer effects. Carbidopa has shown the ability to inhibit the MDA-MB-231 cell line, a highly aggressive triple-negative human breast adenocarcinoma, by inducing reductive stress. The metal complex of carbidopa with zinc (ZnCarbi) was designed to modify carbidopa's structure and exhibited increased cytotoxicity against MDA-MB-231 cells.

View Article and Find Full Text PDF

Morphometry, variations, and histogenesis of umbilical vein, portal sinus, and ductus venosus in human fetal liver: an anatomical study.

Surg Radiol Anat

December 2024

Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India.

Purpose: Anatomical research on fetal liver venous systems is scarce. This study presents variations, morphometric, and histogenesis data through cadaveric study which can aid prenatal radiological analysis.

Materials And Methods: 10% formalin embalmed 16 fetuses (8-second trimester, 8-third trimester) were utilized.

View Article and Find Full Text PDF

Expression of Recombinant Human α-Glucosidase in HEK293 Cells.

J Agric Food Chem

December 2024

Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.

In mammals, intestinal α-glucosidase exists as a maltase-glucoamylase complex (MGAM) and a sucrase-isomaltase complex (SI). In this study, we transiently expressed human MGAM and SI in human embryonic kidney 293 (HEK293) cells. At pH 6.

View Article and Find Full Text PDF

Generation of induced pluripotent cells (hiPSCs)-derived skeletal muscle progenitor cells (SMPCs) holds great promise for regenerative medicine for skeletal muscle wasting diseases, as for example Duchenne Muscular Dystrophy (DMD). Multiple approaches, involving ectopic expression of key regulatory myogenic genes or small molecules cocktails, have been described by different groups to obtain SMPC towards cell-transplantation as a therapeutic approach to skeletal muscle diseases. However, hiPSCs-derived SMPC generated using transgene-free protocols are usually obtained in a low amount and resemble a more embryonal/fetal stage of differentiation.

View Article and Find Full Text PDF

Unlabelled: Neural crest cells (NCCs) are a multipotent embryonic cell population of ectodermal origin that extensively migrate during early development and contribute to the formation of multiple tissues. Cardiac NCCs play a critical role in heart development by orchestrating outflow tract septation, valve formation, aortic arch artery patterning, parasympathetic innervation, and maturation of the cardiac conduction system. Abnormal migration, proliferation, or differentiation of cardiac NCCs can lead to severe congenital cardiovascular malformations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!