Major depressive disorder (MDD) is a common, disabling, and heterogeneous condition that responds unpredictably to current treatments. We previously showed an association between depressive symptoms and plasma concentrations of two cholesterol precursors, desmosterol and 7-dehydrocholesterol (7DHC). Here, we measured total cholesterol and sterol concentrations with mass spectrometry in postmortem brain samples from depressed and control subjects. Mean (±SEM) desmosterol concentration was 8.9 ± 0.97 ng/mg in the depressed versus 10.7 ± 0.72 ng/mg in the control group. The mean of the posterior probability distribution for the difference in desmosterol concentration between the two groups was 2.36 (95% highest density interval [HDI] 0.59-4.17). Mean 7DHC concentrations, 12.5 ± 4.1 ng/mg in the depressed versus 5.4 ± 0.74 ng/mg in the control group, were unlikely to be different (95% HDI, [-1.37-0.34]). We found that presence of trazodone in the peri-mortem toxicology screen accounted for the observed difference in desmosterol concentrations. We also observed extremely high 7DHC levels in all 4 subjects who had taken trazodone. Trazodone has been recently found to inhibit 7-dehydrocholesterol reductase and alter sterol concentrations in rodents, cell culture, human fibroblasts, and blood. In this study, we demonstrate for the first time that trazodone alters human brain sterol composition. Given congenital deficiency of 7-dehydrocholesterol reductase results in Smith-Lemli-Opitz syndrome, our findings support the hypothesis that this commonly used medication may have previously unappreciated risks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8980007 | PMC |
http://dx.doi.org/10.1038/s41398-022-01903-3 | DOI Listing |
J Lipid Res
November 2024
Lipid Clinic, Oslo University Hospital, Aker, Oslo, Norway; Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
J Clin Lipidol
September 2024
Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430000, China. Electronic address:
Background: Patients suffering from sitosterolemia with ABCG5/8 mutation typically present with early-onset or rapidly progressive atherosclerosis. Their kindreds with partial genetic deficiencies of ABCG5/8 are often considered healthy. However, discerning sitosterolemia from its familial kindreds and hyperlipidemia subjects has remained challenging.
View Article and Find Full Text PDFMicrobes Infect
August 2024
Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague 4, Czech Republic. Electronic address:
Sterols perform essential structural and signalling functions in living organisms. Ergosterol contributes to the fluidity, permeability, microdomain formation and functionality of proteins in the yeast membrane. In our study, desmosterol was the most successful at compensating for the lack of ergosterol in Saccharomyces cerevisiae, besides stigmasterol and sitosterol.
View Article and Find Full Text PDFClin Chim Acta
August 2024
Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea. Electronic address:
Background: Sitosterolemia is a rare inherited lipid metabolic disorder characterized by increased levels of plant sterols and accelerated atherosclerosis. Although early detection is beneficial for the prevention of disease progression, it is largely underdiagnosed by routine screening based on conventional lipid profiles.
Materials And Methods: A gas chromatography-mass spectrometry (GC-MS)-based profiling has been developed and validated to measure the levels of biologically active free sterols, including five endogenous sterols and three plant sterols (sitosterol, campesterol, and stigmasterol) in dried blood spot (DBS).
Mol Psychiatry
December 2024
Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
A recent study discovered a novel, complex developmental disability syndrome, most likely caused by maternal fentanyl use disorder. This Fetal Fentanyl Syndrome (FFS) is biochemically characterized by elevated 7-dehydrocholesterol (7-DHC) levels in neonates, raising the question if fentanyl inhibition of the dehydrocholesterol reductase 7 (DHCR7) enzyme is causal for the emergence of the pathophysiology and phenotypic features of FFS. To test this hypothesis, we undertook a series of experiments on Neuro2a cells, primary mouse neuronal and astrocytic cultures, and human dermal fibroblasts (HDFs) with DHCR7 and DHCR7 genotype.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!