Background: Hospital outbreaks of multidrug resistant Pseudomonas aeruginosa are often caused by Pseudomonas aeruginosa clones which produce metallo-β-lactamases, such as Verona Integron-encoded Metallo-β-lactamase (VIM). Although different sources have been identified, the exact transmission routes often remain unknown. However, quantifying the role of different transmission routes of VIM-PA is important for tailoring infection prevention and control measures. The aim of this study is to quantify the relative importance of different transmission routes by applying a mathematical transmission model using admission and discharge dates as well as surveillance culture data of patients.
Methods: We analyzed VIM-PA surveillance data collected between 2010 and 2018 of two intensive-care unit (ICU) wards for adult patients of the Erasmus University Medical Center Rotterdam using a mathematical transmission model. We distinguished two transmission routes: direct cross-transmission and a persistent environmental route. Based on admission, discharge dates, and surveillance cultures, we estimated the proportion of transmissions assigned to each of the routes.
Results: Our study shows that only 13.7% (95% CI 1.4%, 29%) of the transmissions that occurred in these two ICU wards were likely caused by cross-transmission, leaving the vast majority of transmissions (86.3%, 95% CI 71%, 98.6%) due to persistent environmental contamination.
Conclusions: Our results emphasize that persistent contamination of the environment may be an important driver of nosocomial transmissions of VIM-PA in ICUs. To minimize the transmission risk from the environment, potential reservoirs should be regularly and thoroughly cleaned and disinfected, or redesigned.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8981946 | PMC |
http://dx.doi.org/10.1186/s13756-022-01095-x | DOI Listing |
J Neuroendocrinol
January 2025
Department of Psychology, Columbia University, New York, New York, USA.
Among contributors to diffusible signaling are portal systems which join two capillary beds through connecting veins. Portal systems allow diffusible signals to be transported in high concentrations directly from one capillary bed to the other without dilution in the systemic circulation. Two portal systems have been identified in the brain.
View Article and Find Full Text PDFJ Trop Med
December 2024
Department of Infectious Disease, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran.
After the global impact of the COVID-19 pandemic, concerns over virus transmission have risen. A state of health emergency was declared in 2022 due to Clade 2 of the monkeypox (MPOX) virus. In August 2024, another emergency was declared by the World Health Organization (WHO) because of the widespread Clade 1b, which caused a more severe and lethal disease.
View Article and Find Full Text PDFMicrobiome
January 2025
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
Background: Antimicrobial resistance poses a significant threat to global health, with its spread intricately linked across human, animal, and environmental sectors. Revealing the antimicrobial resistance gene (ARG) flow among the One Health sectors is essential for better control of antimicrobial resistance.
Results: In this study, we investigated regional ARG transmission among humans, food, and the environment in Dengfeng, Henan Province, China by combining large-scale metagenomic sequencing with culturing of resistant bacterial isolates in 592 samples.
Sci Rep
January 2025
Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt.
The cotton leafworm, Spodoptra littoralis, causes great damage to cotton crops. A new, safer method than insecticide is necessary for its control. Selenium nanoparticles (SeNPs) are metalloid nanomaterial, with extensive biological activities.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States of America.
The SARS-CoV-2 virus caused the COVID-19 pandemic and brought major challenges to public health. It is transmitted via aerosols, droplets, and fomites. Among these, viral transmission through fomites is not well understood although it remains a very important transmission route.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!