The vibrational and rotational frequencies of most biological macromolecules fall within the terahertz (THz) band; therefore, the THz wave has a strong ability to distinguish substances. Saccharides are important organic substances and the main source of life-sustaining activities. In this study, the spectral characteristics of D-glucose, α-lactose hydrate, and β-maltose hydrate were measured in the solid state through THz time-domain spectroscopy in the frequency range of 0.1-2.5 THz. The crystal configurations of these three saccharides were then simulated using solid-state density functional theory, and the experimental results were found to be in good agreement with the simulation results. Furthermore, the spectral characteristics of the three saccharides in solutions were measured. Each saccharide was found to have unique spectral characteristics, and a correlation existed between the THz absorption spectra of the same substance in the solid state and aqueous solution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8976135 | PMC |
http://dx.doi.org/10.1016/j.isci.2022.104102 | DOI Listing |
Nanotoxicology
January 2025
Institute of Physics Belgrade, University of Belgrade, Belgrade, Serbia.
In this study, we investigated the cytotoxic effect of highly soluble dextran-coated CeO nanoparticles on human fetal lung fibroblasts MRC-5. We examined individual nanoparticle-treated cells by Raman spectroscopy and analyzed Raman spectra using non-negative principal component analysis and k-means clustering. In this way, we determined dose-dependent differences between treated cells, which were reflected through the intensity change of lipid, phospholipid and RNA-related Raman modes.
View Article and Find Full Text PDFQuant Imaging Med Surg
January 2025
Department of Radiation Oncology Physics & Technology, Cancer Hospital of Shandong First Medical University, Jinan, China.
Background: Breast cancer (BC) is a common cancer among women worldwide, and although the use of neoadjuvant therapy (NAT) for BC has become more widespread, there is no standardized prediction of the efficacy of NAT for BC. This study aimed to evaluate the value of quantitative parameters of dual-layer detector spectral computed tomography (DLCT) in predicting whether BC patients can achieve pathological complete response (pCR) after NAT.
Methods: Patients who were first diagnosed with BC in Shandong Cancer Hospital and Institute and received only NAT before surgery were selected for participation in this study.
Quant Imaging Med Surg
January 2025
Henan Key Laboratory of Imaging and Intelligent Processing, Information Engineering University, Zhengzhou, China.
Background: Photon-counting computed tomography (CT) is an advanced imaging technique that enables multi-energy imaging from a single scan. However, the limited photon count assigned to narrow energy bins leads to increased quantum noise in the reconstructed spectral images. To address this issue, leveraging the prior information in the spectral images is essential.
View Article and Find Full Text PDFBackground: In proton radiotherapy, the steep dose deposition profile near the end of the proton's track, the Bragg peak, ensures a more conformed deposition of dose to the tumor region when compared with conventional radiotherapy while reducing the probability of normal tissue complications. However, uncertainties, as in the proton range, patient geometry, and positioning pose challenges to the precise and secure delivery of the treatment plan (TP). In vivo range determination and dose distribution are pivotal for mitigation of uncertainties, opening the possibility to reduce uncertainty margins and for adaptation of the TP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!