Aiming at the problems of the traditional industrial robot fault diagnosis model, such as low accuracy, low efficiency, poor stability, and real-time performance in multi-fault state diagnosis, a fault diagnosis method based on DBN joint information fusion technology is proposed. By studying the information processing method and the deep learning theory, this paper takes the fault of the joint bearing of the industrial robot as the research object. It adopts the technique of combining the deep belief network (DBN) and wavelet energy entropy, and the fault diagnosis of industrial robot is studied. The wavelet transform is used to denoise, decompose, and reconstruct the vibration signal of the joint bearing of the industrial robot. The normalized eigenvector of the reconstructed energy entropy is established, and the normalized eigenvector is used as the input of the DBN. The improved D-S evidence theory is used to solve the problem of fusion of high conflict evidence to improve the fault model's recognition accuracy. Finally, the feasibility of the model is verified by collecting the fault sample data and creating the category sample label. The experiment shows that the fault diagnosis method designed can complete the fault diagnosis of industrial robot well, and the accuracy of the test set is 97.96%. Compared with the traditional fault diagnosis model, the method is improved obviously, and the stability of the model is good; the utility model has the advantages of short time and high diagnosis efficiency and is suitable for the diagnosis work under the condition of coexisting multiple faults. The reliability of this method in the fault diagnosis of the joint bearing of industrial robot is verified.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8976599 | PMC |
http://dx.doi.org/10.1155/2022/4340817 | DOI Listing |
ISA Trans
January 2025
State Key Laboratory of Computer-Aided Design and Computer Graphics, Zhejiang University, Hangzhou, 310027, China; Key Laboratory of Intelligent Rescue Equipment for Collapse Accidents, Ministry of Emergency Management, Hangzhou, 310030, China; Zhejiang Laboratory, Hangzhou, 311121, China. Electronic address:
Existing cross-domain mechanical fault diagnosis methods primarily achieve feature alignment by directly optimizing interdomain and category distances. However, this approach can be computationally expensive in multi-target scenarios or fail due to conflicting objectives, leading to decreased diagnostic performance. To avoid these issues, this paper introduces a novel method called domain feature disentanglement.
View Article and Find Full Text PDFISA Trans
December 2024
GEELY Automobile Research Institute Co. Ltd, Ningbo, Zhejiang 315699, China. Electronic address:
The voltage is one of limited reliable information for battery management system, and the faults of voltage sampling will result in adverse effects and lead to potential risks for operation, which emphasize the importance for investigating the failure modes of voltage sampling and diagnosis algorithm. In this article, a knowledge-data driven sampling diagnosis algorithm is established and an online intelligent diagnosis algorithm is proposed accordingly based on outlier detection with fuzzy entropy. The fault diagnosis algorithm is established and evaluated under positive exploitation, where the knowledge-base of failure mode based on equivalent simulating models is firstly constructed.
View Article and Find Full Text PDFISA Trans
January 2025
Centre de Recherche en Automatique de Nancy-Lorraine University, 2 avenue de la Forêt de Haye, BP, Vandoeuvre Lès Nancy 54516, France. Electronic address:
This paper explores a novel challenge regarding bidirectional Automated Guided Vehicles (AGVs): supervisory control amidst potential sensor faults. The proposed approach uses an event-based control architecture, guided by Supervisory Control Theory (SCT), to achieve non-blocking routing of AGVs. Unlike most routing approaches assuming full event observability, this paper investigates scenarios where events might become unobservable due to sensor faults or disturbances, which may affect the supervisor efficiency.
View Article and Find Full Text PDFISA Trans
January 2025
State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:
This paper addresses the critical challenge of interpretability in machine learning methods for machine fault diagnosis by introducing a novel ad hoc interpretable neural network structure called Sparse Temporal Logic Network (STLN). STLN conceptualizes network neurons as logical propositions and constructs formal connections between them using specified logical operators, which can be articulated and understood as a formal language called Weighted Signal Temporal Logic. The network includes a basic word network using wavelet kernels to extract intelligible features, a transformer encoder with sparse and structured neural attention to locate informative signal segments relevant to decision-making, and a logic network to synthesize a coherent language for fault explanation.
View Article and Find Full Text PDFPLoS One
January 2025
Automation School Guangdong University of Petrochemical Technology, Maoming, Guangdong, China.
Centrifugal compressors are widely used in the oil and natural gas industry for gas compression, reinjection, and transportation. Fault diagnosis and identification of centrifugal compressors are crucial. To promptly monitor abnormal changes in compressor data and trace the causes leading to these data anomalies, this paper proposes a security monitoring and root cause tracing method for compressor data anomalies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!