Performance degradation and damage model of rice husk ash concrete under dry-wet cycles of sulfate environment.

Environ Sci Pollut Res Int

School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan, 232001, Anhui Province, China.

Published: August 2022

Rice husk ash concrete (RHAC) is a new type of concrete that has been rapidly gaining acceptance in recent years. In this paper, the improvement effect of rice husk ash (RHA) on the sulfate erosion performance of concrete was confirmed. The ratio of rice husk ash concrete (RHAC) was optimized and compared with ordinary concrete (OC). The performance degradation of 9%RHAC (rice husk ash at 9% by weight of cement) and OC within 135 times erosion dry-wet cycles solution with NaSO at 5% by weight of solution were studied, including the change of apparent phenomena, compressive strength, tensile strength, effective porosity, and dynamic elastic modulus. The microstructure changes of samples before and after sulfate dry-wet cycle were observed by using a scanning electron microscope (SEM). The results show that with the increase of sulfate dry-wet cycle times, the concrete specimen gradually peels off and expands in volume. The compressive strength and tensile strength increase first and then drop sharply, the effective porosity decreases first and then increases, and the relative dynamic elastic modulus increases and then decreases. The reason is that the ettringite and gypsum are formed by the reaction of sulfate intrusion and hydration products under wetting treatment. After drying treatment, ettringite and free water combine to form sodium sulfate. In the early of circulation, ettringite, gypsum, and sodium sulfate fill the internal pores of the concrete and improve the density. As the number of sulfate dry-wet cycles increases, expansion products accumulate, causing structural expansion damage and deterioration of mechanical performance. However, the hydrated calcium silicate hydrate gel was produced by mixing rice husk ash with concrete to improve the material strength and corrosion resistance. The deterioration degree of the 9%RHAC is better than that of OC at all stages. Finally, the damage constitutive models were established, and the accuracy is higher compared with the measured value.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-022-19955-9DOI Listing

Publication Analysis

Top Keywords

rice husk
24
husk ash
24
ash concrete
16
dry-wet cycles
12
sulfate dry-wet
12
concrete
9
performance degradation
8
sulfate
8
concrete rhac
8
compressive strength
8

Similar Publications

Rice, wheat, and maize grains are staple foods, widely consumed for their mineral and nutritional values. However, they can accumulate toxic elements from contaminated soils, posing health risks. This study investigates the bioaccumulation patterns of 52 elements (including nutrients, heavy metals, and rare earth elements) in various parts (grain, husk, straw, and root) of cereals grown in a heavily polluted region.

View Article and Find Full Text PDF

Exploration of Key Factors in the Preparation of Highly Hydrophobic Silica Aerogel from Rice Husk Ash Assisted by Machine Learning.

Gels

January 2025

Key Laboratory of Original Agro-Environmental Pollution Prevention and Control (Ministry of Agriculture and Rural Affairs (MARA)), Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China.

To expand the applications of hydrophobic silica aerogels derived from rice husk ash (HSA) through simple traditional methods (without adding special materials or processes), this paper employs machine learning to establish mathematical models to identify optimal conditions for extracting water glass and investigates how preparation conditions and heat treatment temperatures affect properties such as the porosity and hydrophobicity of HSA. The results indicate that the decision tree regression model provides the most accurate predictions for the extraction rate and modulus of water glass. Notably, the water contact angle of HSA produced using nitric acid as a catalyst can reach as high as 159.

View Article and Find Full Text PDF

An on-site, sensitive, and cost-effective method for determining aflatoxin B1 (AFB1) in rice samples is proposed, combining magnetic solid phase extraction (MSPE) and time-resolved fluorescence immunochromatography (TRFICA) techniques. Cost-effective rice husks were carbonized and combined with nanomaterials to make magnetic nanocomposites that acted as effective adsorbents in MSPE. Under optimal conditions, the entire process was completed in 15 min with a visual detection limit of 0.

View Article and Find Full Text PDF

Rice husk biowaste derived microcrystalline cellulose reinforced sustainable green composites: A comprehensive characterization for lightweight applications.

Int J Biol Macromol

January 2025

Natural Composites Research Group Lab, Department of Mechanical and Process Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand.

This study addresses the issue of waste generation within the food industry, focusing on the conversion of rice husk waste into value-added products. The investigation involves a comprehensive characterization of microcrystalline cellulose extracted from the rice husk and reinforcing them in bio-epoxy resin to determine its feasibility in producing ecofriendly products. The dried rice husk waste was made to undergo a series of treatments, including alkali, acid hydrolysis, and bleaching for extracting high purity microcrystalline cellulose.

View Article and Find Full Text PDF

Effects of hydrodynamic cavitation combined with snail enzyme treatment on the structure and functional properties of water-soluble dietary fiber in rice husks.

Ultrason Sonochem

January 2025

College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China; National Coarse Cereals Engineering Research Center, Daqing 163319, PR China; Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing 163319, PR China. Electronic address:

In this study, we adopted the synergistic modification technology of hydrodynamic cavitation and snail enzyme, to improve the yield and activity of soluble dietary fibers (SDFs) of rice husk. The physicochemical properties, structural changes, and inhibition of α-glucosidase and α-amylase of SDFs were examined in vitro. This synergistic treatment significantly increased the yield of SDFs to 18.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!