Objectives: Targeted RNA-based Next-Generation Sequencing (tRNA-seq) is increasingly being used in molecular diagnostics for gene fusion detection in non-small cell lung cancer (NSCLC). However, few data support its clinical application for the detection of single nucleotide variants (SNVs) and small insertions/deletions. In this study, we evaluated the performance of tRNA-seq using Archer FusionPlex for simultaneous detection of actionable gene fusions, splice variants, SNVs and indels in formalin-fixed, paraffin-embedded NSCLC tissue.
Materials And Methods: A total of 126 NSCLC samples, including 20 validation samples and 106 diagnostic cases, were analyzed by targeted DNA-based Next-Generation Sequencing (tDNA-seq) followed by tRNA-seq.
Results: All 28 SNVs and indels in the validation set, and 34 out of 35 mutations in the diagnostic set were identified by tRNA-seq. The only mutation undetected by tRNA-seq, ERBB2 p.(Ser310Tyr), was not included in the current Archer panel design. tRNA-seq revealed one additional BRAF p.(Val600Glu) mutation not found by tDNA-seq. SNVs and indels were correctly called by the vendor supplied software, except for ERBB2 duplication p.(Tyr772_A775dup) which was only detected by an additional in-house developed bio-informatics pipeline. Variant allelic frequency (VAF) values were generally higher at the expression level compared to the genomic level (range 6-96% for tRNA-seq versus 6-61% for tDNA-seq) and low VAF mutations in DNA (6-8% VAF) were all confirmed by tRNA-seq. Finally, tRNA-seq additionally identified a driver fusion or splice variant in 10 diagnostic NSCLC samples including one MET exon 14 skipping variant not detected by tDNA-seq.
Conclusion: Our results demonstrate that tRNA-seq can be implemented in a diagnostic setting as an efficient strategy for simultaneous detection of actionable gene fusions, splice variants, SNVs and indels in NSCLC provided that adequate RNA-seq analysis tools are available, especially for the detection of indels. This approach allows upfront identification of currently recommended targetable molecular alterations in NSCLC samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lungcan.2022.02.013 | DOI Listing |
Plant mitochondrial and plastid genomes have exceptionally slow rates of sequence evolution, and recent work has identified an unusual member of the gene family ("plant ") as being instrumental in preventing point mutations in these genomes. However, the eXects of disrupting -mediated DNA repair on "germline" mutation rates have not been quantified. Here, we used mutation accumulation (MA) lines to measure mutation rates in mutants and matched wild type (WT) controls.
View Article and Find Full Text PDFClin Genet
January 2025
Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Intellectual and developmental disabilities (IDD) are clinically and genetically heterogeneous disorders of global concern. While whole exome sequencing (WES) is used to identify single nucleotide variants (SNVs) and small insertions/deletions (Indels) in IDD patients, its detection rate is limited. This study evaluated the value of integrating copy number variation (CNV) analysis into traditional SNV/Indel analysis based on trio-WES.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Predictive Oncology Laboratory, Marseille Research Cancer Center, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix-Marseille University, Equipe labellisée « Ligue Nationale Contre le Cancer », 13009 Marseille, France.
By identifying somatic mutations, whole-exome sequencing (WES) has become a technology of choice for the diagnosis and guiding treatment decisions in many cancers. Despite advances in the field of somatic variant detection and the emergence of sophisticated tools incorporating machine learning, accurately identifying somatic variants remains challenging. Each new somatic variant caller is often accompanied by claims of superior performance compared to predecessors.
View Article and Find Full Text PDFHum Genomics
January 2025
Department of Endocrine and Metabolic Diseases, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.
Background: The molecular genetic diagnosis of congenital adrenal hyperplasia (CAH) is very challenging due to the high homology between the CYP21A2 gene and its pseudogene CYP21A1P.
Methodology: This study aims to assess the clinical efficacy of targeted long-read sequencing (T-LRS) by comparing it with a control method based on the combined assay (NGS, Multiplex ligation-dependent probe amplification and Sanger sequencing) and to introduce T-LRS as a first-tier diagnostic test for suspected CAH patients to improve the precise diagnosis of CAH.
Results: A large cohort of 562 participants including 322 probands and 240 family members was enrolled for the perspective (96 probands) and prospective study (226 probands).
Am J Hum Genet
January 2025
Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Radboudumc Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands. Electronic address:
Clinical short-read exome and genome sequencing approaches have positively impacted diagnostic testing for rare diseases. Yet, technical limitations associated with short reads challenge their use for the detection of disease-associated variation in complex regions of the genome. Long-read sequencing (LRS) technologies may overcome these challenges, potentially qualifying as a first-tier test for all rare diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!