With the rapid advancements in technology and growing aerospace applications, there is a need for effective low-weight and thermally insulating materials. Aerogels are known for their ultra-lightweight and they are highly porous materials with nanopores in a range of 2 to 50 nm with very low thermal conductivity values. However, due to hygroscopic nature and brittleness, aerogels are not used commercially and in daily life. To enhance the mechanical and hydrophobic properties, reinforcement materials such as styrene, cyanoacrylates, epoxy along with hydroxyl, amines, vinyl groups are added to the surface. The addition of organic materials resulted in lower service temperatures which reduce its potential applications. Polyimides (PI) are commonly used in engine applications due to their suitable stability at high temperatures along with excellent mechanical properties. Previous research on polyimide aerogels reported high flexibility or even foldability. However, those works' strategy was mainly limited to altering the backbone chemistry of polyimide aerogels by changing either the monomer's compositions or the chemical crosslinker. This work aims to summarize, categorize, and highlight the recent techniques for improving and tailoring properties of polyimide aerogels followed by the recent advancements in their applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cis.2022.102646 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, China.
Humans possess the remarkable ability to perceive the intricate world by integrating multiple senses. However, the challenge of enabling humanoid robots to achieve multimodal sensing and fine recognition of metallic materials persists. In this study, we propose a flexible tactile sensor that mimics the sensory patterns of human skin, which is assembled by a flexible electromagnetic coil that is engraved on the surface of a polyimide substrate and porous MXene/CNT aerogel.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Shandong Institute for Product Quality Inspection, Jinan, 250102, PR China.
Photothermal materials are considered as promising materials because they can convert clean solar energy into thermal and electrical energy. However, developing degradable photothermal materials with highly efficient solar-thermal-electric energy conversion performance remains a huge challenge. Here, a superhydrophobic bio-polyimide/carbon quantum dots aerogel (S-BioPI/CQDs) is synthesized.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.
Adv Mater
November 2024
Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, Empa, Überlandstrasse 129, Dübendorf, 8600, Switzerland.
Mitigating embodied emissions is becoming increasingly crucial as the energy supply shifts toward more sustainable sources. Bio-based materials present a potentially more sustainable alternative to synthetic polymers; however, it often do not yet match the performance of synthetic materials. Given the ongoing reliance on high-performance, high-environmental-impact materials, it is essential to ensure their complete recyclability.
View Article and Find Full Text PDFResearch (Wash D C)
October 2024
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!