Objective: Brain-computer interface triggered-functional electrical stimulation (BCI-FES) is an emerging neurorehabilitation therapy post stroke, mostly for the affected hand. We explored the feasibility of a bimanual BCI-FES and its short-term priming effects, i.e. stimuli-induced behaviour change. We compared EEG parameters between unimanual and bimanual movements and differentiated the effect of age from the effect of stroke.
Methods: Ten participants with subacute stroke, ten age-matched older healthy adults, and ten younger healthy adults underwent unimanual and bimanual BCI-FES sessions. Delta alpha ratio (DAR) and brain symmetry index (BSI) were derived from the pre- and post- resting-state EEG. Event-related desynchronization (ERD) and laterality index were derived from movement- EEG.
Results: Participants were able to control bimanual BCI-FES. ERD was predominantly contralateral for unimanual movements and bilateral for bimanual movements. DAR and BSI only changed in healthy controls. Baseline values indicated that DAR was affected by stroke while BSI was affected by both age and stroke.
Conclusions: Bimanual BCI control offers a larger repertoire of movements, while causing the same short-term changes as unimanual BCI-FES. Prolonged practice may be required to achieve a measurable effect on DAR and BSI for stroke.
Significance: Bimanual BCI-FES is feasible in people affected by stroke.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clinph.2022.03.002 | DOI Listing |
Clin Neurophysiol
June 2022
University of Glasgow, United Kingdom. Electronic address:
Objective: Brain-computer interface triggered-functional electrical stimulation (BCI-FES) is an emerging neurorehabilitation therapy post stroke, mostly for the affected hand. We explored the feasibility of a bimanual BCI-FES and its short-term priming effects, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!