A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Core-shell magnetic molecularly imprinted polymer for selective recognition and detection of sunset yellow in aqueous environment and real samples. | LitMetric

Magnetic Molecularly imprinted polymers (MMIPs) have been recently recognized as an exceptional tool for monitoring and decontamination of environmental and biological samples of diverse nature. Based on the potential applications as sorbents and biomimetic sensors, herein, a core-shell magnetic-molecularly imprinted polymer (MMIP) was developed as a selective material for separation and sensing of sunset yellow (SY) dye in an aqueous environment and real samples. The MMIP was synthesized via precipitation polymerization using SY as a template, MAA as a functional monomer (chosen based on simulation studies), EGDMA as a cross-linking agent, and AIBN as an initiator. To elaborate the specificity of MMIP, a comparative agent, magnetic non-imprinted polymer (MNIP) was also synthesized. The XRD results showed that the MMIP showed both crystalline and amorphous structure attributed to the presence and polymeric and non-polymeric groups. The FTIR spectra confirmed synthesis of intermediate and final MMIP product. The SEM results showed spherical morphology and porous structure of the MMIP with an average particle size of 0.636 μm in diameter. The MMIP was first employed as a sorbent for the removal of SY from the aqueous environment. The binding experiments performed at optimized operating conditions (pH 2; time 30 min; sorbent dosage 3 mg; sorbate concentration 80 ppm) showed more selectivity when compared with MNIP. The data fitted best to Langmuir's sorption isotherm (Q 359.8 mg/g) and followed the pseudo-second-order kinetic model. The synthesized MMIP was also used as an electrochemical sensor for detection of SY dye in the aqueous environment, which exhibited a linear range of detection as (1.51 × 10 - 1.5 × 10 M). The limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.00413 M and 0.0137 M, respectively. While the R value was found to be 0.997 at optimized analytical conditions. These results suggested that the synthesized MMIP can be applied for the selective separation and quantification of SY dye in sample of diverse nature.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2022.113209DOI Listing

Publication Analysis

Top Keywords

aqueous environment
16
mmip
9
magnetic molecularly
8
molecularly imprinted
8
imprinted polymer
8
sunset yellow
8
environment real
8
real samples
8
diverse nature
8
dye aqueous
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!