Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Positron Emission Tomography (PET) has become a preferred imaging modality for cancer diagnosis, radiotherapy planning, and treatment responses monitoring. Accurate and automatic tumor segmentation is the fundamental requirement for these clinical applications. Deep convolutional neural networks have become the state-of-the-art in PET tumor segmentation. The normalization process is one of the key components for accelerating network training and improving the performance of the network. However, existing normalization methods either introduce batch noise into the instance PET image by calculating statistics on batch level or introduce background noise into every single pixel by sharing the same learnable parameters spatially. In this paper, we proposed an attentive transformation (AT)-based normalization method for PET tumor segmentation. We exploit the distinguishability of breast tumor in PET images and dynamically generate dedicated and pixel-dependent learnable parameters in normalization via the transformation on a combination of channel-wise and spatial-wise attentive responses. The attentive learnable parameters allow to re-calibrate features pixel-by-pixel to focus on the high-uptake area while attenuating the background noise of PET images. Our experimental results on two real clinical datasets show that the AT-based normalization method improves breast tumor segmentation performance when compared with the existing normalization methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2022.3164570 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!