In this study, rheological properties of the Wood Cellulose NanoFibers (WCNF), Bacterial Cellulose NanoFibers (BCNF), and Chitin NanoFibers (ChNF) as well as physical properties of films prepared from each nano-hydrogel were investigated. Each nano-hydrogel was prepared in 2 concentrations of 0.5 and 1 wt% for rheological study. Rheological properties were measured using a rotational rheometer. The flow behaviour data were fitted with rheological models. Apparent viscosity was higher in higher concentrations of nano-hydrogels. Herschel-Bulkley model was the best model for flow behaviour data fitting. BCNF nano-hydrogels had the highest hysteresis loop while WCNF nano-hydrogels had the best structure recovery and lowest hysteresis loop. At LVE (Linear Viscoelastic Region), G' (storage modulus) and G″ (loss modulus) had a constant value, but as strain increased their values decreased. Storage modulus was found to be greater than loss modulus in all samples during frequency sweep test. BCNF nano-hydrogel showed the lowest frequency dependency. Chitin nanofilms had the highest elongation and stress value.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9114446PMC
http://dx.doi.org/10.1049/nbt2.12083DOI Listing

Publication Analysis

Top Keywords

rheological properties
12
study rheological
8
cellulose nanofibers
8
flow behaviour
8
behaviour data
8
hysteresis loop
8
storage modulus
8
loss modulus
8
rheological
5
properties wood/bacterial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!