Microsurgical clipping creates a subsequent barrier of blood flow into intracranial aneurysms, whereas endovascular treatment relies on neointima and thrombus formation. The source of endothelial cells covering the endoluminal layer of the neointima remains unclear. Therefore, the aim of the present study was to investigate the origin of neointima-forming cells after cell-tracer injection in the already well-established Helsinki rat microsurgical sidewall aneurysm model. Sidewall aneurysms were created by suturing decellularized or vital arterial pouches end-to-side to the aorta in male Lewis rats. Before arteriotomy with aneurysm suture, a cell-tracer injection containing CM-Dil dye was performed into the clamped aorta to label endothelial cells in the adjacent vessel and track their proliferation during follow-up (FU). Treatment followed by coiling (n = 16) or stenting (n = 15). At FU (7 days or 21 days), all rats underwent fluorescence angiography, followed by aneurysm harvesting and macroscopic and histological evaluation with immunohistological cell counts for specific regions of interest. None of the 31 aneurysms had ruptured upon follow-up. Four animals died prematurely. Macroscopically residual perfusion was observed in 75.0% coiled and 7.0% of stented rats. The amount of cell-tracer-positive cells was significantly elevated in decellularized stented compared to coiled aneurysms with respect to thrombus on day 7 (p = 0.01) and neointima on day 21 (p = 0.04). No significant differences were found in thrombus or neointima in vital aneurysms. These findings confirm worse healing patterns in coiled compared to stented aneurysms. Neointima formation seems particularly dependent on the parent artery in decellularized aneurysms, whereas it is supported by the recruitment from aneurysm wall cells in vital cell-rich walls. In terms of translation, stent treatment might be more appropriate for highly degenerated aneurysms, whereas coiling alone might be adequate for aneurysms with mostly healthy vessel walls.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/63580 | DOI Listing |
J Comp Neurol
December 2024
Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany.
Navigating in diverse environments to find food, shelter, or mating partners is an important ability for nearly all animals. Insects have evolved diverse navigational strategies to survive in challenging and unknown environments. In the insect brain, the central complex (CX) plays an important role in spatial orientation and directed locomotion.
View Article and Find Full Text PDFJ Comp Neurol
November 2023
Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany.
Insects have evolved remarkable abilities to navigate over short distances and during long-range seasonal migrations. The central complex (CX) is a navigation center in the insect brain that controls spatial orientation and directed locomotion. It is composed of the protocerebral bridge (PB), the upper (CBU) and lower (CBL) division of the central body, and a pair of noduli.
View Article and Find Full Text PDFJ Vis Exp
March 2022
Department of Neurosurgery, Kantonsspital Aarau; Cerebrovascular Research Group, Department for BioMedical Research, University of Bern; Faculty of Medicine, University of Bern.
Microsurgical clipping creates a subsequent barrier of blood flow into intracranial aneurysms, whereas endovascular treatment relies on neointima and thrombus formation. The source of endothelial cells covering the endoluminal layer of the neointima remains unclear. Therefore, the aim of the present study was to investigate the origin of neointima-forming cells after cell-tracer injection in the already well-established Helsinki rat microsurgical sidewall aneurysm model.
View Article and Find Full Text PDFJ Neurointerv Surg
December 2022
Neurosurgery, Kantonsspital Aarau AG, Aarau, Switzerland.
Background: Unlike clipping that forms an immediate barrier of blood flow into intracranial aneurysms, endovascular treatments rely on thrombus organization and neointima formation. Therefore, a continuous endothelial cell layer is crucial to prevent blood flow in the former aneurysm. This study investigates the origin of endothelial cells in the neointima of endovascular treated aneurysms, specifically whether cells from the parent artery play a role in neointima formation.
View Article and Find Full Text PDFJ Nucl Med
August 2021
Department of Radiology, University of California San Diego, La Jolla, California;
Inflammation is associated with a range of serious human conditions, including autoimmune and cardiovascular diseases and cancer. The ability to image active inflammatory processes greatly enhances our ability to diagnose and treat these diseases at an early stage. We describe molecular compositions enabling sensitive and precise imaging of inflammatory hotspots in vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!