Kidney disease represents a global health burden of increasing prevalence and is an independent risk factor for cardiovascular disease. Myeloid cells are a major cellular compartment of the immune system; they are found in the healthy kidney and in increased numbers in the damaged and/or diseased kidney, where they act as key players in the progression of injury, inflammation, and fibrosis. They possess enormous plasticity and heterogeneity, adopting different phenotypic and functional characteristics in response to stimuli in the local milieu. Although this inherent complexity remains to be fully understood in the kidney, advances in single-cell genomics promise to change this. Specifically, single-cell RNA sequencing (scRNA-seq) has had a transformative effect on kidney research, enabling the profiling and analysis of the transcriptomes of single cells at unprecedented resolution and throughput, and subsequent generation of cell atlases. Moving forward, combining scRNA- and single-nuclear RNA-seq with greater-resolution spatial transcriptomics will allow spatial mapping of kidney disease of varying etiology to further reveal the patterning of immune cells and nonimmune renal cells. This review summarizes the roles of myeloid cells in kidney health and disease, the experimental workflow in currently available scRNA-seq technologies, and published findings using scRNA-seq in the context of myeloid cells and the kidney.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8785845 | PMC |
http://dx.doi.org/10.34067/KID.0003682021 | DOI Listing |
Diabetes Obes Metab
January 2025
Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China.
Metabolic syndrome-related diseases frequently involve disturbances in skeletal muscle lipid metabolism. The accumulation of lipid metabolites, lipid-induced mitochondrial stress in skeletal muscle cells, as well as the inflammation of adjacent adipose tissue, are associated with the development of insulin resistance and metabolic dysfunction. Consequently, when antidiabetic medications are used to treat various chronic conditions related to hyperglycaemia, the impact on skeletal muscle lipid metabolism should not be overlooked.
View Article and Find Full Text PDFAdv Clin Exp Med
January 2025
Luddy School of Informatics, Computing and Engineering, Indiana University, Bloomington, USA.
Background: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma (RCC). Due to the lack of symptoms until advanced stages, early diagnosis of ccRCC is challenging. Therefore, the identification of novel secreted biomarkers for the early detection of ccRCC is urgently needed.
View Article and Find Full Text PDFBackground: Diabetic kidney disease (DKD) is one of the typical complications of type 2 diabetes (T2D), with approximately 10 % of DKD patients experiencing a Rapid decline (RD) in kidney function. RD leads to an increased risk of poor outcomes such as the need for dialysis. Albuminuria is a known kidney damage biomarker for DKD, yet RD cases do not always show changes in albuminuria, and the exact mechanism of RD remains unclear.
View Article and Find Full Text PDFInt J Cardiol Heart Vasc
February 2025
Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.
Background: Heart failure (HF) is a significant cause of death among patients with chronic kidney disease (CKD). Emerging data suggest a crucial role of fibroblast growth factor 23 (FGF23) in the pathogenesis of HF in CKD patients. The present study aimed to investigate whether the serum intact FGF23 (iFGF23) level is elevated when ejection fraction (EF) is preserved and to evaluate its predictive value for incident HF and cardiac mortality in CKD patients with preserved EF.
View Article and Find Full Text PDFJ Tradit Complement Med
January 2025
Korean Medicine Research Center for Bi-Wi Control Based Gut-Brain System Regulation, College of Korean Medicine, Dongshin University, Naju-si, Jeollanam-do 58245, South Korea.
Background: Jeoryeong-tang (JRT) was first recorded in . It is composed of Polyporus Sclerotium, Poria, Asini Corii Colla, Alisma Rhizome, and Talcum at the same weight ratio. These medicinal materials are known for diuretic and hemostatic effects and have been traditionally used to treat kidney and bladder diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!