Pyrrolysyl-tRNA synthetase (PylRS) is frequently used for site-specific incorporation of noncanonical amino acids (ncAAs) into proteins. Recently, the active site of PylRS (PylRS) has been rationally engineered to expand its substrate compatibility, enabling the incorporation of difficult ncAAs. However, mutations beyond the active site that enhance the enzymatic properties of PylRS have not been reported. We utilized phage-assisted non-continuous evolution (PANCE) to evolve PylRS to efficiently incorporate -Boc-l-lysine (BocK). Directed evolution yielded several mutations outside of the active site that greatly improve the activity of the enzyme. We combined the most effective mutations to generate a new PylRS variant (PylRS) that is highly active and selective towards several lysine and phenylalanine derivatives. The mutations in PylRS can be used to enhance previously engineered PylRS constructs such as PylRS, and PylRS is compatible in applications requiring dual ncAA incorporation and substantially improves the yield of these target proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8965510 | PMC |
http://dx.doi.org/10.3389/fmolb.2022.850613 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, The University of Hong Kong, Hong Kong Island 000000, Hong Kong SAR, China.
Methanol (ME) is a liquid hydrogen carrier, ideal for on-site-on-demand H generation, avoiding its costly and risky distribution issues, but this "ME-to-H" electric conversion suffers from high voltage (energy consumption) and competitive oxygen evolution reaction. Herein, we demonstrate that a synergistic cofunctional PtPd/(Ni,Co)(OH) catalyst with Pt single atoms (Pt) and Pd nanoclusters (Pd) anchored on OH-vacancy(V)-rich (Ni,Co)(OH) nanoparticles create synergistic triadic active sites, allowing for methanol-enhanced low-voltage H generation. For MOR, OH* is preferentially adsorbed on Pd and then interacts with the intermediates (such as *CHO or *CHOOH) adsorbed favorably on neighboring Pt with the assistance of hydrogen bonding from the surface hydrogen of (Ni,Co)(OH).
View Article and Find Full Text PDFEMBO J
January 2025
Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA.
Mitochondrial metabolism requires the chaperoned import of disulfide-stabilized proteins via CHCHD4/MIA40 and its enigmatic interaction with oxidoreductase Apoptosis-inducing factor (AIF). By crystallizing human CHCHD4's AIF-interaction domain with an activated AIF dimer, we uncover how NADH allosterically configures AIF to anchor CHCHD4's β-hairpin and histidine-helix motifs to the inner mitochondrial membrane. The structure further reveals a similarity between the AIF-interaction domain and recognition sequences of CHCHD4 substrates.
View Article and Find Full Text PDFSci Rep
January 2025
Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P. O. Box 33, Nizwa, Oman.
Diabetes mellitus, particularly type 2 diabetes, is a growing global health challenge characterized by chronic hyperglycemia due to insulin resistance. One therapeutic approach to managing this condition is the inhibition of α-glucosidase, an enzyme involved in carbohydrate digestion, to reduce postprandial blood glucose levels. In this study, a series of thiosemicarbazide-linked quinoline-piperazine derivatives were synthesized and evaluated for their α-glucosidase inhibitory activity, to identify new agents for type 2 diabetes management.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China.
Glycosylation is an effective means to alter the structure and properties of plant compounds, influencing the pharmacological activity of natural products (NPs) to obtain highly active NPs. In nature, glucosides are the most widely distributed, while other glycosides such as xylosides are less common and present in lower quantities. This is due to the scarcity of xylosyltransferases with substrate promiscuity in nature, and the modification of their catalytic function is also quite challenging.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China. Electronic address:
Emerging single-atom materials and metal sulfides hold significant promise as alternatives to precious metal catalysts for nitroaromatics conversion; however, their intrinsic activity and durability remain insufficiently understood. Herein, sulfur and nitrogen co-doped carbon matrices incorporating CoS nanoparticles and single-atom Co with Co-N-S coordination were constructed through a facile pyrolysis approach. Advanced characterization techniques, such as X-ray absorption fine structure (XAFS) and aberration-corrected electron microscopy, unveiled unique structural features underpinning exceptional catalytic efficiency and recyclability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!