To enhance bone regeneration, the use of bone morphogenetic protein (BMP)-2 is an attractive option. Unfortunately, the dose-dependent side effects prevent its widespread use. Therefore, a novel osteogenic agent using a different mechanism of action than BMP-2 is highly desirable. Previous reports demonstrated that prostaglandin E2 receptor 4 (EP4) agonists have potent osteogenic effects on non-human cells and are one of the potential alternatives for BMP-2. Here, we investigated the effects of an EP4 agonist (AKDS001) on human cells with a rat heterotopic xenograft model of human bone. Bone formation in the xenograft model was significantly enhanced by AKDS001 treatment. Histomorphometric analysis showed that the mode of bone formation by AKDS001 was minimodeling rather than remodeling. In cultured human mesenchymal stem cells, AKDS001 enhanced osteogenic differentiation and mineralization the cAMP/PKA pathway. In cultured human preosteoclasts, AKDS001 suppressed bone resorption by inhibiting differentiation into mature osteoclasts. Thus, we conclude that AKDS001 can enhance bone formation in grafted autogenous bone by minimodeling while maintaining the volume of grafted bone. The combined use of an EP4 agonist and autogenous bone grafting may be a novel treatment option to enhance bone regeneration. However, we should be careful in interpreting the results because male xenografts were implanted in male rats in the present study. It remains to be seen whether females can benefit from the positive effects of AKDS001 MS by using female xenografts implanted in female rats in clinically relevant animal models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8968459 | PMC |
http://dx.doi.org/10.3389/fbioe.2022.845716 | DOI Listing |
Adv Healthc Mater
January 2025
State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
Immune-mediated bone regeneration driven by bone biomaterials offers a therapeutic strategy for repairing bone defects. Among 2D nanomaterials, TiCT MXenes have garnered substantial attention for their potential in tissue regeneration. This investigation concentrates on the role of MXene nanocomposites in modulating the immune microenvironment within bone defects to facilitate bone tissue restoration.
View Article and Find Full Text PDFFood Funct
January 2025
Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
Indole-3-propionic acid (IPA), a metabolite produced by gut microbiota through tryptophan metabolism, has recently been identified as playing a pivotal role in bone metabolism. IPA promotes osteoblast differentiation by upregulating mitochondrial transcription factor A (Tfam), contributing to increased bone density and supporting bone repair. Simultaneously, it inhibits the formation and activity of osteoclasts, reducing bone resorption, possibly through modulation of the nuclear factor-κB (NF-κB) pathway and downregulation of osteoclast-associated factors, thereby maintaining bone structural integrity.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran.
Although 3D printing is becoming a dominant technique for scaffold preparation in bone tissue engineering (TE), developing hydrogel-based ink compositions with bioactive and self-healing properties remains a challenge. This research focuses on developing a bone scaffold based on a composite hydrogel, which maintains its self-healing properties after incorporating bioactive glass and is 3D-printable. The plain hydrogel ink was synthesized using natural polymers of 1 wt % N-carboxyethyl chitosan, 2 wt % hyaluronic acid aldehyde, 0.
View Article and Find Full Text PDFInt J Surg
January 2025
Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Purpose: Congenital pseudarthrosis of the tibia (CPT) is a rare condition typically manifesting within the first decade of life. The primary objectives of surgical intervention for CPT include achieving long-term bony union of the tibia, preventing or minimizing limb length discrepancies (LLD), avoiding mechanical axis deviations of the tibia and adjacent joints, and preventing refracture. This study aims to conduct a systematic review of current treatment methods for CPT to determine the most effective non-surgical and surgical management strategies for pediatric patients with this condition.
View Article and Find Full Text PDFJ Vasc Bras
December 2024
Universidade Federal do Ceará - UFC, Hospital Universitário Walter Cantídio - HUWC, Fortaleza, CE, Brasil.
Ulnar artery aneurysms are extremely rare and are mainly associated with hypothenar hammer syndrome, an ischemic disorder of the hand resulting from mechanical and repetitive trauma to the hypothenar region. The ulnar artery is hit against the hook of the hamate bone, causing damage to the vessel wall and leading to occlusion or formation of an aneurysm. We describe the case of a truck driver who underwent resection of an ulnar artery aneurysm in the right hand and reconstruction using end-to-end anastomosis with no complications or recurrence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!