Dyslipidemia, characterized by a high level of lipids (cholesterol, triglycerides, or both), can increase the risk of developing and progressing atherosclerosis. As atherosclerosis progresses, the number and severity of aterial plagues increases with greater risk of myocardial infarction, a major contributor to cardiovascular mortality. Atherosclerosis progresses in four phases, namely endothelial dysfunction, fatty streak formation, lesion progression and plaque rupture, and eventually thrombosis and arterial obstruction. With greater understanding of the pathological processes underlying atherosclerosis, researchers have identified that lipoproteins play a significant role in the development of atherosclerosis. In particular, apolipoprotein B (apoB)-containing lipoproteins have been shown to associate with atherosclerosis. Oxidized low-density lipoproteins (ox-LDLs) also contribute to the progression of atherosclerosis whereas high-density lipoproteins (HDL) contribute to the removal of cholesterol from macrophages thereby inhibiting the formation of foam cells. Given these known associations, lipoproteins may have potential as biomarkers for predicting risk associated with atherosclerotic plaques or may be targets as novel therapeutic agents. As such, the rapid development of drugs targeting lipoprotein metabolism may lead to novel treatments for atherosclerosis. A comprehensive review of lipoprotein function and their role in atherosclerosis, along with the latest development of lipoprotein targeted treatment, is timely. This review focuses on the functions of different lipoproteins and their involvement in atherosclerosis. Further, diagnostic and therapeutic potential are highlighted giving insight into novel lipoprotein-targetted approaches to treat atherosclerosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947823 | PMC |
http://dx.doi.org/10.14336/AD.2021.0929 | DOI Listing |
J Transl Med
December 2024
Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu, China.
Background: Coronary artery disease (CAD) has become a dominant economic and health burden worldwide, and the role of autophagy in CAD requires further clarification. In this study, we comprehensively revealed the association between autophagy flux and CAD from multiple hierarchies. We explored autophagy-associated long noncoding RNA (lncRNA) and the mechanisms underlying oxidative stress-induced human coronary artery endothelial cells (HCAECs) injury.
View Article and Find Full Text PDFArch Bronconeumol
December 2024
Precision Medicine in Respiratory Diseases Group, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria de Aragón (IISAragón), Zaragoza, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERes), Madrid, Spain; Respiratory Service, Hospital Universitario Miguel Servet, University of Zaragoza, Zaragoza, Spain.
In Vivo
December 2024
Department of Health and Care Professions, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K.;
Background: Coronary artery disease (CAD), primarily caused by atherosclerosis, is a leading cause of death, presenting as angina or myocardial infarction. Advances in cardiac imaging, angiography, and procedures like percutaneous coronary intervention (PCI) or coronary artery bypass graft (CABG) surgery have improved early detection and management of this condition. This report presents the case of a man who experienced worsening exertional chest pain and discomfort while at rest.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
December 2024
Health Management Center, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
Background: Atherosclerosis, a leading cause of cardiovascular disease, is characterized by intricate interactions among lipid metabolism, inflammation, and immune response. Investigating immune-related genetic factors and immune cell infiltration in atherosclerotic tissues may provide insights into potential therapeutic targets.
Methods: We analyzed transcriptomic data from atherosclerotic and normal tissues to identify differentially expressed genes (DEGs).
Phytomedicine
December 2024
Shanghai 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, PR China. Electronic address:
Background: Endothelial-to-mesenchymal transition (EndMT) has been identified as a key factor to the initiation and progression of the pathogenesis of atherosclerosis (AS). Salvianic acid A (SAAS) is the primary water-soluble bioactive ingredient found in Salvia miltiorrhiza, is renowned for its therapeutic effects on cardiovascular diseases. However, the efficacy and mechanisms of SAAS in treating EndMT-induced AS remain underexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!