Microglial activation and melatonin protection have been reported in diabetic retinopathy (DR). Whether melatonin could regulate microglia to protect the inner blood-retinal barrier (iBRB) remains unknown. In this study, the role of microglia in iBRB breakdown and the mechanisms of melatonin's regulation on microglia were explored. In diabetic rat retinas, activated microglia proliferated and migrated from the inner retina to the outer retina, accompanied by the obvious morphological changes. Meanwhile, significant leakage of albumin was evidenced at the site of close interaction between activated microglia and the damaged pericytes and endothelial cells. , inflammation-related cytokines, such as tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), interleukin (IL)-1β, and arginase-1 (Arg-1), were increased significantly in CoCl-treated BV2 cells. The supernatant derived from CoCl-treated BV2 cells significantly decreased the cell viability and disrupted the junctional proteins in both pericytes and endothelial cells, resulting in severe leakage. Melatonin suppressed the microglial overactivation, i.e., decreasing the cell number and promoting its anti-inflammatory properties in diabetic rat retinas. Moreover, the leakage of iBRB was alleviated and the pericyte coverage was restored after melatonin treatment. , when treated with melatonin in CoCl-treated BV2 cells, the inflammatory factors were decreased, while the anti-inflammatory factors were increased, further reducing the pericyte loss and increasing the tight junctions. Melatonin deactivated microglia inhibition of PI3K/Akt/Stat3/NF-κB signaling pathways, thus maintaining the integrity of iBRB. The present data support a causal role for activated microglia in iBRB breakdown and highlight the therapeutic potential of melatonin in the treatment of DR by regulating microglia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8964465PMC
http://dx.doi.org/10.3389/fimmu.2022.831660DOI Listing

Publication Analysis

Top Keywords

activated microglia
12
cocl-treated bv2
12
bv2 cells
12
microglia
9
melatonin
8
inner blood-retinal
8
blood-retinal barrier
8
regulating microglia
8
microglia inhibition
8
inhibition pi3k/akt/stat3/nf-κb
8

Similar Publications

Neuroinflammation and mitochondrial dysfunction are early events in Alzheimer's disease (AD) and contribute to neurodegeneration and cognitive impairment. Evidence suggests that the inflammatory axis mediated by macrophage migration inhibitory factor (MIF) binding to its receptor, CD74, plays an important role in many central nervous system (CNS) disorders such as AD. Our group has developed DRhQ, a novel CD74 binding construct which competitively inhibits MIF binding, blocks macrophage activation and migration into the CNS, enhances anti-inflammatory microglia cell numbers and reduces pro-inflammatory gene expression.

View Article and Find Full Text PDF

Spinal astrocyte-derived interleukin-17A promotes pain hypersensitivity in bone cancer mice.

Acta Pharm Sin B

December 2024

Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China.

Spinal microglia and astrocytes are both involved in neuropathic and inflammatory pain, which may display sexual dimorphism. Here, we demonstrate that the sustained activation of spinal astrocytes and astrocyte-derived interleukin (IL)-17A promotes the progression of mouse bone cancer pain without sex differences. Chemogenetic or pharmacological inhibition of spinal astrocytes effectively ameliorates bone cancer-induced pain-like behaviors.

View Article and Find Full Text PDF

Amidst growing concerns over COVID-19 aftereffects like fatigue and cognitive issues, NRICM101, a traditional Chinese medicine, has shown promise. Used by over 2 million people globally, it notably reduces hospitalizations and intubations in COVID-19 patients. To explore whether NRICM101 could combat COVID-19 brain fog, we tested NRICM101 on hACE2 transgenic mice administered the S1 protein of SARS-CoV-2, aiming to mitigate S1-induced cognitive issues by measuring animal behaviors, immunohistochemistry (IHC) staining, and next-generation sequencing (NGS) analysis.

View Article and Find Full Text PDF

and formula alleviates depressive behaviors microglia regulation in an unpredictable chronic mild stress animal model.

J Tradit Complement Med

January 2025

Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan.

Background And Aim: (CM) and (AM) are medicinal mushrooms with potential applications in the treatment of mood disorders, including depression and anxiety. While research suggests that both CM and AM possess anti-inflammatory properties and hold potential for treating depression when administered separately, there is limited knowledge about their efficacy when combined in a formula, as well as the underlying mechanism involving the modulation of microglia.

Experimental Procedure: Rats received oral administrations of the low-dose formulation, medium-dose formulation, and high-dose formulation over 28 consecutive days as part of the UCMS protocols.

View Article and Find Full Text PDF

Microglial galectin-3 increases with aging in the mouse hippocampus.

Korean J Physiol Pharmacol

January 2025

Department of Anatomy and Convergence Medical Science, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea.

Microglial activation during aging is associated with neuroinflammation and cognitive impairment. Galectin-3 plays a crucial role in microglial activation and phagocytosis. However, the role of galectin-3 in the aged brain is not completely understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!