The clinical severity of () respiratory infection correlates with antibacterial gene signature. infection induces the expression of an antibacterial gene, as well as a central stress response gene, thus activating transcription factor 3 (ATF3). ATF3-deficient mice have attenuated protection against lethal pneumonia and have a higher bacterial load. We tested the hypothesis that ATF3-related protection is based on the increased function of macrophages. Primary marrow-derived macrophages (BMDM) were used to determine the mechanism through which ATF3 alters the bacterial-killing ability. The expression of ATF3 correlated with the expression of antibacterial genes. Mechanistic studies showed that ATF3 upregulated antibacterial genes, while ATF3-deficient cells and lung tissues had a reduced level of antibacterial genes, which was accompanied by changes in the antibacterial process. We identified multiple ATF3 regulatory elements in the antibacterial gene promoters by chromatin immunoprecipitation analysis. In addition, Wild type (WT) mice had higher F4/80 macrophage migration in the lungs compared to ATF3-null mice, which may correlate with actin filament severing through ATF3-targeted actin-modifying protein gelsolin (GSN) for the macrophage cellular motility. Furthermore, ATF3 positively regulated inflammatory cytokines IL-6 and IL-12p40 might be able to contribute to the infection resolution. These data demonstrate a mechanism utilized by to induce ATF3 to regulate antibacterial genes for antimicrobial processes within the cell, and to specifically regulate the actin cytoskeleton of F4/80 macrophages for their migration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8965742PMC
http://dx.doi.org/10.3389/fimmu.2022.839502DOI Listing

Publication Analysis

Top Keywords

antibacterial genes
16
antibacterial gene
12
antibacterial
9
atf3
8
atf3 positively
8
expression antibacterial
8
positively regulates
4
regulates antibacterial
4
antibacterial immunity
4
immunity modulating
4

Similar Publications

is an important opportunistic pathogen often resistant to antibiotics. Specific phages can be useful in eliminating infection caused by . phage vB_KlebPS_265 (KlebP_265) and its host strain were isolated from the sputum of a patient with infection.

View Article and Find Full Text PDF

One of the significant challenges facing modern medicine is the rising rate of antibiotic resistance, which impacts public health, animal health, and environmental preservation. Evaluating antibiotic resistance in wildlife and their environments is crucial, as it offers essential insights into the dynamics of resistance patterns and promotes strategies for monitoring, prevention, and intervention. and genera isolates were recovered from fecal samples of wild animals and environmental samples using media without antibiotic supplementation.

View Article and Find Full Text PDF

While studying the prevalence and profile of antibiotic resistance among isolated from the feces of calves with signs of colibacillosis, a strain with a wide spectrum of drug resistance was isolated. Whole-genome sequencing, followed by bioinformatic processing and the annotation of genes of this strain, showed that the genome has a total length of 4,803,482 bp and contains 4986 genes, including 122 RNA genes. A total of 31% of the genes are functionally significant and represent 26 functional groups.

View Article and Find Full Text PDF

The emergence of hypervirulent and carbapenem-resistant hypermucoviscous strains presents a significant public health challenge due to their increased virulence and resistance to multiple antibiotics. This study evaluates the antibiotic susceptibility patterns and virulence profiles of classical and hypervirulent strains isolated from various clinical samples. A total of 500 clinical samples were collected from patients at the Mardan Medical Complex and Ayub Medical Complex in KPK between July 2022 and June 2024.

View Article and Find Full Text PDF

Trifolirhizin: A Phytochemical with Multiple Pharmacological Properties.

Molecules

January 2025

Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea.

Trifolirhizin is an important flavonoid glycoside reported from the roots of medicinal plants such as Astragalus membranaceus, Sophora tonkinensis, Ononis vaginalis, Euchresta formosana, Sophora Subprostrate, Ononis spinose, and Sophora flavescens. It is considered one of the important constituents responsible for the various medicinal properties of these medicinal plants. Studies have revealed the multiple pharmacological properties of trifolirhizin: anti-inflammatory, antioxidant, antibacterial, anti-ulcerative colitis, antiasthma, hepatoprotective, osteogenic, skin-whitening, wound-healing, and anticancer (against various types of cancers).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!