Diabetic retinopathy (DR) is a common complication of diabetes mellitus and is the major cause of vision loss in the working-age population. Although DR is traditionally considered a microvascular disease, an increasing body of evidence suggests that neurodegeneration is an early event that occurs even before the manifestation of vasculopathy. Accordingly, attention should be devoted to the complex neurodegenerative process occurring in the diabetic retina, also considering possible functional alterations in non-neuronal cells, such as glial cells. In this work, we investigate functional changes in Müller cells, the most abundant glial population present within the retina, under experimental conditions that mimic those observed in DR patients. More specifically, we investigated on the Müller cell line rMC-1 the effect of high glucose, alone or associated with activation processes and oxidative stress. By fluorescence microscopy and cellular assays approaches, we studied the alteration of functional properties, such as reactive oxygen species production, antioxidant response, calcium homeostasis, and mitochondrial membrane potential. Our results demonstrate that hyperglycaemic-like condition is well-tolerated by rMC-1 cells but makes them more susceptible to a pro-inflammatory environment, exacerbating the effects of this stressful condition. More specifically, rMC-1 cells exposed to high glucose decrease their ability to counteract oxidative stress, with consequent toxic effects. In conclusion, our study offers new insights into Müller cell pathophysiology in DR and proposes a novel model which may prove useful to further investigate potential antioxidant and anti-inflammatory molecules for the prevention and/or treatment of DR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8972164 | PMC |
http://dx.doi.org/10.3389/fncel.2022.862325 | DOI Listing |
Arch Med Res
July 2019
Department of Surgery, School of Medicine, Complutense University of Madrid, Madrid, Spain.
Chronic inflammatory liver disease with an acute deterioration of liver function is named acute-on-chronic inflammation and could be regulated by the metabolic impairments related to the liver dysfunction. In this way, the experimental cholestasis model is excellent for studying metabolism in both types of inflammatory responses. Along the evolution of this model, the rats develop biliary fibrosis and an acute-on-chronic decompensation.
View Article and Find Full Text PDFCells
June 2019
Department of Surgery, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain.
Portal hypertension is a common complication of liver disease, either acute or chronic. Consequently, in chronic liver disease, such as the hypertensive mesenteric venous pathology, the coexisting inflammatory response is classically characterized by the splanchnic blood circulation. However, a vascular lymphatic pathology is produced simultaneously with the splanchnic arterio-venous impairments.
View Article and Find Full Text PDFClin Res Hepatol Gastroenterol
October 2019
Department of Surgery, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain. Electronic address:
Introduction: Splanchnic mast cells increase in chronic liver and in acute-on-chronic liver diseases. We administered Ketotifen, a mast cell stabilizer, and measured the mast cells in the splanchnic organs of cholestatic rats.
Material And Methods: These groups were studied: sham-operated rats (S; n = 15), untreated microsurgical cholestasic rats (C; n = 20) and rats treated with Ketotifen: early (SK-e; n = 20 and CKe; n = 18), and late (SK-l; n = 15 and CK-l; n = 14).
Inflamm Res
February 2019
Department of Surgery, School of Medicine, Complutense University of Madrid, Plaza de Ramón y Cajal s.n., 28040, Madrid, Spain.
Background: In mammals, inflammation is required for wound repair and tumorigenesis. However, the events that lead to inflammation, particularly in non-healing wounds and cancer, are only partly understood.
Findings: Mast cells, due to their great plasticity, could orchestrate the inflammatory responses inducing the expression of extraembryonic programs of normal and pathological tissue formation.
Inflamm Res
February 2018
Department of Surgery, School of Medicine, Complutense University of Madrid, Plaza de Ramón y Cajal s.n., 28040, Madrid, Spain.
The inflammatory response expressed after wound healing would be the recapitulation of systemic extra-embryonic functions, which would focus on the interstitium of the injured tissue. In the injured tissue, mast cells, provided for a great functional heterogeneity, could play the leading role in the re-expression of extra-embryonic functions, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!