The miRNA-based post-transcription modification has been extensively studied in hypertension. It however remains elusive how miRNA expression is regulated in this pathological process. We hypothesize that hydroxymethylation in the promoter regions tightly controls the levels of key miRNAs, which in turn affects the development of hypertension. The levels of hydroxymethylation in the promoter regions from thoracic aortic tissues were compared between spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto rats (WKYs), using hydroxymethylcytosine DNA immunoprecipitation (hMeDIP) sequencing. The altered hydroxymethylation level of miR-3571 was confirmed by glucosylation-coupled hydroxymethylation-sensitive qPCR. We further identified claudin 1(CLDN1) as a key target of miR-3571 via bioinformatic prediction (targetscan) and dual-luciferase activity assays. Finally, we analyzed the contribution of miR-3571/CLDN1 axis in the proliferation and migration of vascular smooth muscle cells (VSMCs). The hydroxymethylation level of miR-3571 promoter region in thoracic aortic tissue from spontaneously hypertensive rats was lower than that from normotensive Wistar-Kyoto rats. Accordingly, the expression of miR-3571 was lower during hypertension, with up-regulated CLDN1 protein levels. More importantly, we found that miR3571 overexpression led to phenotypic changes of VSMCs, and inhibited the proliferation and migration of muscle cells via suppressing CLDN1 as well. Our findings further suggested that CLDN1 up-regulation increase the activity of ERK1/2 in VSMCs. Our study suggested that hydroxymethylation in the promoter regions controlled the level of miR-3571 and revealed the important roles of miR-3571 and CLDN1 in VSMCs during the development of hypertension. In addition, our results also indicated that miR-3571/CLDN1 axis regulated the functions of VSMCs via the ERK1/2 pathway. Taken together, our findings support miR-3571 as a novel biomarker for the diagnosis and prevention of hypertension.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8964332 | PMC |
http://dx.doi.org/10.7150/ijms.64639 | DOI Listing |
PLoS One
January 2025
Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
Mitogen-activated protein kinase 1 (MAPK1) is a serine/threonine kinase that plays a crucial role in the MAP kinase signaling transduction pathway. This pathway plays a crucial role in various cellular processes, including cell proliferation, differentiation, adhesion, migration, and survival. Besides, many chemotherapeutic drugs targeting the MAPK pathway are used in clinical practice, and novel inhibitors of MAPK1 with improved specificity and efficacy are required.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, P. R. China.
Nasopharyngeal carcinoma (NPC) is an Asia-prevalent malignancy, yet its genetic underpinnings remain incompletely understood. Here, a transcriptome-wide association study (TWAS) is conducted on NPC, leveraging gene expression prediction models based on epithelial tissues and genome-wide association study (GWAS) summary statistics from 1577 NPC cases and 6359 controls of southern Chinese descent. The TWAS identifies VAMP8 on chromosome 2p11.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China.
Purpose: Ocular neovascularization is a major cause of blindness. Although fibroblast growth factor-2 (FGF2) has been implicated in the pathophysiology of angiogenesis, the underlying mechanisms remain incompletely understood. The purpose of this study was to investigate the role of FGF2 in retinal neovascularization and elucidate its underlying mechanisms.
View Article and Find Full Text PDFSmall
January 2025
Department of Operative Dentistry and Endodontics, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001, China.
Oral mucosal injuries are commonly caused by factors such as trauma, infection, or inflammation, especially in diabetic patients where healing is difficult and significantly affects quality of life. In this study, a nanocarrier system based on DNA tetrahedrons (TDN) is developed, which serve as ideal vectors due to their excellent intracellular uptake and drug delivery capabilities. By efficiently delivering miR132 into cells, the proliferation and migration of human oral mucosal fibroblasts (HOMFs) and human umbilical vein endothelial cells (HUVECs) are regulated, along with the modulation of inflammation and antioxidant processes.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, 54538, South Korea.
Hair follicle growth depends on the intricate interaction of cells within the follicle and its vascular supply. Current FDA-approved treatments like minoxidil have limitations, including side effects and the need for continuous use. Moracin M, a compound from Moraceae family, was investigated for its effects on hair growth and vascular regeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!