Transient ETV2 Expression Promotes the Generation of Mature Endothelial Cells from Human Pluripotent Stem Cells.

Biol Pharm Bull

Laboratory of Biomedical Innovation, Graduate School of Pharmaceutical Sciences, Osaka University.

Published: April 2022

Differentiation protocols are used for induced pluripotent stem cells (iPSCs) in in vitro disease modeling and clinical applications. Transplantation of endothelial cells (ECs) is an important treatment strategy for ischemic diseases. For example, in vitro generated ECs can be used to provide the vascular plexus to regenerate organs such as the liver. Here, we demonstrate that the E-twenty-six (ETS) transcription factor ETV2 alone can directly convert iPSCs into vascular endothelial cells (iPS-ETV2-ECs) with an efficiency of over 90% within 5 d. Although the stable overexpression of ETV2 induced the expression of multiple key factors for endothelial development, the induced ECs were less mature. Furthermore, doxycycline-inducible transient ETV2 expression could upregulate the expression of von Willebrand factor (vWF) in iPS-ETV2-ECs, leading to a mature phenotype. The findings of this study on generation of mature iPS-ETV2-ECs provide further insights into the exploration of cell reprogramming from iPSCs. Here, we provide a new protocol for differentiation of iPSCs, thus providing a new source of ECs for in vitro disease modeling and clinical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1248/bpb.b21-00929DOI Listing

Publication Analysis

Top Keywords

endothelial cells
12
transient etv2
8
etv2 expression
8
generation mature
8
pluripotent stem
8
stem cells
8
vitro disease
8
disease modeling
8
modeling clinical
8
clinical applications
8

Similar Publications

This study identifies the secondary metabolites from Alternaria alternate and evaluates their ACE-2: Spike RBD (SARS-CoV-2) inhibitory activity confirmed via immunoblotting in human lung microvascular endothelial cells. In addition, their in vitro anti-inflammatory potential was assessed using a cell-based assay in LPS-treated RAW 264.7 macrophage cells.

View Article and Find Full Text PDF

Many cell types are involved in the regulation of cutaneous wound healing in diabetes. Clarifying the mechanism of cell-cell interactions is important for identifying therapeutic targets for diabetic cutaneous ulcers. The function of vascular endothelial cells in the cutaneous microenvironment is critical, and a decrease in their biological function leads directly to refractory wound healing.

View Article and Find Full Text PDF

Purpose: A human model able to simulate the manifestation of corneal endothelium decompensation could be advantageous for wound healing and future cell therapy assessment. The study aimed to establish an ex vivo human cornea endothelium wound model where endothelium function can be evaluated by measuring corneal thickness changes.

Methods: The human cornea was maintained in an artificial anterior chamber, with a continuous culture medium infusion system designed to sustain corneal endothelium and epithelium simultaneously.

View Article and Find Full Text PDF

Ischemic stroke is the most common cerebrovascular disease and the leading cause of permanent disability worldwide. Recent studies have shown that stroke development and prognosis are closely related to abnormal tryptophan metabolism. Here, significant downregulation of 3-hydroxy-kynurenamine (3-HKA) in stroke patients and animal models is identified.

View Article and Find Full Text PDF

Purpose: Ocular neovascularization is a major cause of blindness. Although fibroblast growth factor-2 (FGF2) has been implicated in the pathophysiology of angiogenesis, the underlying mechanisms remain incompletely understood. The purpose of this study was to investigate the role of FGF2 in retinal neovascularization and elucidate its underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!